
8-Bit, 2-Port Bus Switch with 25Ω Series Resistor

Product Features:

- Near zero propagation delay
- 25Ω series resistor termination
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power (0.2 µA Typical)
- Ideally suited for notebook applications

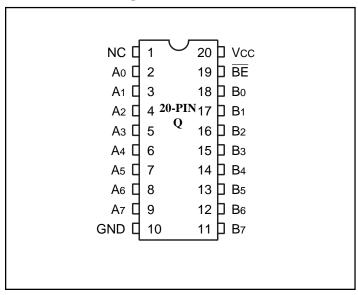
Pin compatible with 74 series 245 logic devices

- Packages available:
 - 20-pin 150 mil wide plastic QSOP (Q)

Truth Table(1)

Function	BE	A0-7
Disconnect	Н	Hi-Z
Connect	L	B0-7

Note:


= High Voltage Level 1. H L = Low Voltage Level Hi-Z = High Impedance

Product Description:

Pericom Semiconductor's PI5C series of logic circuits are produced in the Company's advanced 0.8 micron CMOS technology, achieving industry leading performance.

The PI5C32245 is a 8-bit, 2-port bus switch designed with a low ON resistance (5 Ω) allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. The switches are turned ON by the Bus Enable (BE) input signal. Pinout is compatible with PI74FCT245T (Octal Bidirectional Transceiver). The device has a built-in 25Ω resistor to reduce noise resulting from reflections, thus eliminating the need for an external terminating resistor.

Product Pin Configuration

Product Pin Description

Pin Name	Description
BE	Bus Enable Input (Active LOW)
A0-7	Bus A
B0-7	Bus B
GND	Ground
Vcc	Power

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature—65°C to +150°C
Ambient Temperature with Power Applied –40°C to +85°C
Supply Voltage to Ground Potential (Inputs & Vcc Only) . –0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only)–0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5V \pm 5\%$)

Parameters	Description	Test Conditions(1)	Min.	$Typ^{(2)}$	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
Іін	Input HIGH Current	Vcc = Max., Vin = Vcc			±1	μA
IIL	Input LOW Current	Vcc = Max., Vin = GND			±1	μA
Іохн	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	μA
Vik	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$		-0.7	-1.2	V
Ios	Short Circuit Current ⁽³⁾	A (B) = 0V, B (A) = Vcc	100			mA
VH	Input Hysteresis at Control Pins			150		mV
Ron	Switch On Resistance ⁽⁴⁾	Vcc = Min., Vin = 0.0V, Ion = 48 mA Vcc = Min., Vin = 2.4V, Ion = 15 mA		28 35	40 48	Ω

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽⁵⁾	Description	Test Conditions	Тур	Max.	Units
Cin	Input Capacitance	$V_{IN} = 0V$		6	pF
Coff	A/B Capacitance, Switch Off	$V_{IN} = 0V$		6	pF
Con	A/B Capacitance, Switch On	$V_{IN} = 0V$		8	pF

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, $TA = 25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.
- 5. This parameter is determined by device characterization but is not production tested.

150 PS8136 08/20/97

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	$Typ^{(2)}$	Max.	Units
Icc	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND$ or V_{CC}		0.1	3.0	μА
ΔΙςς	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = 3.4V^{(3)}$			2.5	mA
Іссь	Supply Current per Input per MHz ⁽⁴⁾	Vcc = Max., A and B Pins Open BE = GND Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); A and B pins do not contribute to Icc.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

			PI5C32245			
			Com.			
Parameters	Description	Conditions ⁽¹⁾	Min.	Max.	Unit	
tplh	Propagation Delay ^(2,3)	CL = 50 pF		1.25	ns	
t PHL	Ax to Bx, Bx to Ax	$R_L = 500\Omega$				
tpzh	Bus Enable Time		1.5	7.5	ns	
tpzl	\overline{BE} to Ax or Bx					
t PHZ	Bus Disable Time		1.5	5.5	ns	
tPLZ	BE to Ax or Bx					

Notes:

- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com