

Product Features

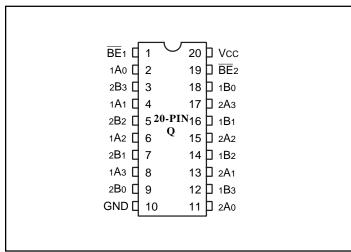
- · Near zero propagation delay
- 25Ω series resistor termination
- · Direct bus connection when switches are ON
- Ultra Low Quiescent Power (0.2µA Typical)
 - Ideally suited for notebook applications
- Pin compatible with 74 Series 244 logic devices
- · Packages available:
 - 20-pin 150 mil wide plastic QSOP (Q)

Logic Block Diagram

Truth Table(1)

BE ₁	BE2	1A, 1B	2A, 2B
Н	Н	Disconnect	Disconnect
L	Н	1A = 1B	Disconnect
Н	L	Disconnect	2A = 2B
L	L	1A = 1B	2A = 2B

Note: 1. H = High Voltage Level L = Low Voltage Level


8-bit, 2-Port BusSwitch with 25Ω Series Resistor

Product Description

Pericom Semiconductor's PI5C series of logic circuits are produced in the Company's advanced 0.8 micron CMOS technology, achieving industry leading performance.

The PI5C32244 features a set of eight bus switches which is pinout and function compatible with the PI74FCT244T, 74F244, and 74ALS/AS/LS 244 8-bit drivers. Two enable signals ($\overline{BE}n$) turn the switches on similar to the enable signals of the 244. The bus switch creates no additional propagation delay or ground bounce noise. The device has a built-in 25Ω resistor to reduce noise resulting from reflections, thus eliminating the need for an external terminating resistor.

Product Pin Configuration

Product Pin Description

143

Pin Name	Description
BEn	Bus Output Enable (Active LOW)
A0-A3	Bus A
B0-B3	Bus B
GND	Ground
Vcc	Power

PS8145 11/07/97

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied –40°C to +85°C
Supply Voltage to Ground Potential (Inputs & Vcc Only) –0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only)0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5V \pm 5\%$)

.....

Parameters	Description	Test Conditions(1)	Min.	$Typ^{(2)}$	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
Іін	Input HIGH Current	Vcc = Max., Vin = Vcc			±1	μA
IIL	Input LOW Current	Vcc = Max., Vin = GND			±1	μА
Іохн	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	μA
Vik	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$		-0.7	-1.2	V
Ios	Short Circuit Current ⁽³⁾	A (B) = 0V, B (A) = Vcc	100			m A
VH	Input Hysteresis at Control Pins			150		mV
Ron	Switch On Resistance ⁽⁴⁾	Vcc = Min., Vin = 0.0V, Ion = 48 mA Vcc = Min., Vin = 2.4V, Ion = 15 mA	18 18	28 35	40 48	Ω

Capacitance (TA = 25°C, f = 1 MHz)

Parameters ⁽⁵⁾	Description	Test Conditions	Тур.	Max.	Units
Cin	Input Capacitance	$V_{IN} = 0V$		6	pF
Coff	A/B Capacitance, Switch Off	$V_{IN} = 0V$		6	pF
Con	A/B Capacitance, Switch On	$V_{IN} = 0V$		8	pF

Notes

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, $TA = 25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

144

5. This parameter is determined by device characterization but is not production tested.

PS8145 11/07/97

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾			Typ ⁽²⁾	Max.	Units
Icc	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND$ or V_{CC}		0.1	3.0	μА
ΔIcc	Supply Current per Input @ TTL HIGH	Vcc = Max.	$V_{IN} = 3.4V^{(3)}$			2.5	mA
Іссь	Supply Current per Input per MHz ⁽⁴⁾	Vcc = Max., A and B Pins Open BE1 or BE2 = GND Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input (VIN = 3.4V, control inputs only); A and B pins do not contribute to Icc.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

Switching Characteristics over Operating Range

			PI5C32244 Com.		
Parameters	Description	$\boldsymbol{Conditions}^{(1)}$	Min	Max	Unit
tPLH tPHL	Propagation Delay ^(2,3) Ax to Bx	$C_L = 50 \text{ pF}$ $R_L = 500\Omega$		2	ns
tpzh tpzl	Bus Enable Time BEx to Ax or Bx		1.5	5.6	ns
tphz tplz	Bus Disable Time BEx to Ax or Bx		1.5	5.2	ns

Notes:

- 1. See test circuit and wave forms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com