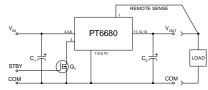

SLTS098

(Revised 6/30/2000)


- Single Device: 5A Output
- Input Voltage Range: 18V to 36V
- Adjustable Output Voltage
- 80% Efficiency
- Remote Sense Capability
- Standby Function

The PT6680 series is a new addition to Power Trends' line of 24V bus Integrated Switching Regulators (ISRs). Designed for general purpose indus-

trial applications requiring as much as 36V input and 5A of output current, the PT6680 is packaged in a 14-Pin SIP (Single In-line Package) and is available in a surface-mount configuration.

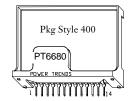
Only two external capacitors are required for proper operation. Please note that this product does not include short circuit protection.

Standard Application

- C_1 = Required 560 μ F electrolytic (1)
- C₂ = Required 330μF electrolytic
- Q₁= NFET-or Open Collector Gate

Pin-Out Information

1	Remote Sense
2	Do Not Connect
3	STBY*- Standby
4	V _{in}
5	V_{in}
6	V_{in}
7	GND
8	GND
9	GND
10	GND
11	V_{out}
12	V_{out}
13	V_{out}
14	V _{out} Adjust


Ordering Information

PT6681□ = +3.3 Volts **PT6682**□ = +2.5 Volts **PT6683**□ = +5.0 Volts **PT6684**□ = +9.0 Volts

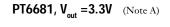
PT6685 \square = +15.0 Volts **PT6686** \square = +12.0 Volts

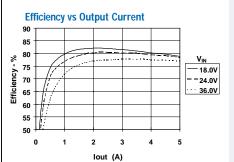
PT Series Suffix (PT1234X)

Case/Pin Configuration	Heat Spreader	Heat Spreader with Side Tabs
Vertical Through-Hole	Р	R
Horizontal Through-Ho	ole D	G
Horizontal Surface Mou	nt E	В

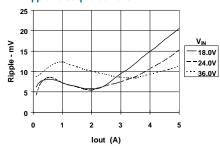
Note: Back surface of product is conducting metal

Specifications

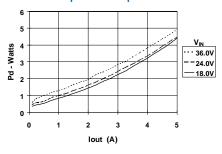

Characteristics			ı				
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units	
Output Current	I_o	$T_a = 60$ °C, 200 LFM, pkg P $T_a = 25$ °C, natural convection	0.1 (2) 0.1 (2)		5.0 5.0	A	
Input Voltage Range	V_{in}	$0.1A \le I_o \le I_{omax}$	+18V	_	+36V	V	
Output Voltage Tolerance	$\Delta { m V_o}$	Over V_{in} range $T_a = -40$ °C to +65°C	Vo-0.1	_	Vo+0.1	V	
Output Voltage Adjust Range	$ m V_{oadj}$	Pin 14 to V_o or ground $V_o = +3.3$ $V_o = +2.5$ $V_o = +5.6$ $V_o = +9.6$ $V_o = +12$ $V_o = +15$	5V 1.8 0V 3.0 0V 6.0 V 9.0		4.7 4.3 6.5 10.2 13.6 17.0	V	
Line Regulation	Reg _{line}	$+18V \le V_{in} \le +36V$, $I_o = I_{omax}$	_	±0.5	±1.0	$%V_{o}$	
Load Regulation	Reg _{load}	$V_{in} = +28V, 0.1 \le I_{o} \le I_{omax}$	_	±0.5	±1.0	$%V_{o}$	
Vo Ripple/Noise	V_n	V_{in} = +28V, I_{o} = I_{omax} $V_{o} \le +6V_{o}$ > +6V		50 1.0	_	mVpp %V _o	
Transient Response with C ₂ = 330µF	$egin{array}{c} t_{ m tr} \ V_{ m os} \end{array}$	I_o step between 2.5A and 5.0A V_o over/undershoot	_	100 100	_	μSec mV	
Efficiency	η	$\begin{array}{c} V_{in} = +28V, \ I_o = I_{o \ max} & V_o = +3.3 \\ V_o = +2.5 \\ V_o = +5.6 \\ V_o = +9.6 \\ V_o = +15 \end{array}$	5V — 0V — 0V — .0V —	78 73 82 87 88 90		%	
Switching Frequency	f_{o}	$+18V \le V_{in} \le +36V$ Over I_o range	500	550	600	kHz	
Maximum Operating Temperature Range	T_a	Over V _{in} range	-40	_	+85 (3)	°C	
Storage Temperature	T_s	_	-40	_	+125	°C	
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's	
Mechanical Vibration	_	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board		7.5		G's	
Weight	_	_	_	14		grams	


Notes (1) The 560µF electrolytic input capacitor must be rated for 1.5Arms ripple current. Both an input and output capacitor is required for proper operation.

- (2) The ISR will operate down to no load with reduced specifications.
- (3) Consult the SOA curves or contact the factory to determine the appropriate derating.



5 Amp 18-36V Input Integrated Switching Regulator



Ripple vs Output Current

Power Dissipation vs Output Current

Note A: Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typcial for the ISR. Note B: SOA curves represent conditions at which internal components are at or below manufacturer's maximum operating temperatures.

Adjusting the Output Voltage of the PT6680 5Amp 18-36V Bus Converter Series

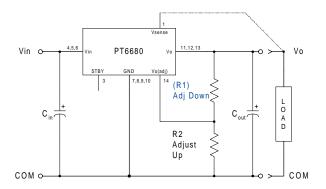
The output voltage of the Power Trends PT6680 Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor 1 . Table 1 gives the respective allowable adjustment range for each model in the series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 14 (V_o adjust) and pins 7-10 (GND).

Adjust Down: Add a resistor (R1), between pin 14 (V_o adjust) and pins 11-13 (V_{out}).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate.

Notes:


- 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors from V_{o} adjust to either GND, V_{out} , or the Remote Sense pin. Any capacitance added to the V_{o} adjust pin will affect the stability of the ISR.
- If the Remote Sense feature is being used, connecting the resistor (R1) between pin 14 (V_o adjust) and pin 1 (Remote Sense) can benefit load regulation.
- 4. For output voltages above 10.0Vdc, the maximum output current must be limited to 4Adc.
- Adjustments to the output voltage may place additional limits on the input voltage for the part. The revised limits must comply with the following requirements.

$$V_{in}$$
 (min) = $(V_{out} + 3)V$ or 18V,
whichever is higher.
 V_{in} (max) = $(10 \times V_{out})V$ or 36V,
whichever is less.

Table 1

PT6680 ADJUS	STMENT AND FOR	MULA PARAMETERS					
Series Pt #	PT6682	PT6681	PT6683	PT6684	PT6686	PT6685	
Vo (nom)	2.5V	3.3V	5.0V	9.0V	12.0V	15.0V	
Va (min)	1.8V	2.2V	3.0V	6.0V	9.0V	10.0V	
V _a (max)	4.3V	4.7V	6.5V	10.2V	13.6V	17.0V	
R ₀ (kΩ)	4.99	4.22	2.49	2.0	2.0	2.0	
R _S (kΩ)	2.49	4.99	4.99	12.7	12.7	12.7	

Figure 1

The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulae.

$$(R1) \hspace{1cm} = \hspace{1cm} \frac{R_o \, (V_o - 1.25) (V_a - 1.25)}{1.25 \, (V_o - V_a)} \hspace{0.5cm} - R_s \hspace{0.5cm} k \Omega$$

$$R2 \hspace{1cm} = \hspace{1cm} \frac{R_o \left(V_o - 1.25 \right)}{V_a - V_o} \hspace{1cm} - \hspace{1cm} R_s \hspace{1cm} k \Omega \label{eq:reconstraints}$$

Where: V_o = Original output voltage

V_a = Adjusted output voltage

The register as valve in Telescope

R_o = The resistance value in Table 1 R_s = The series resistance from Table 1

PT6680 Series

Table 2

	STMENT RESISTO						
eries Pt #	PT6682	PT6681	PT6683	Series Pt #	PT6684	PT6686	PT6685
urrent	5Adc	5Adc	5Adc	Current	5Adc	4Adc	4Adc
o (nom)	2.5Vdc	3.3Vdc	5.0Vdc	V ₀ (nom)	9.0Vdc	12.0Vdc	15.0Vdc
(req'd)	(1.4)1.0			V _a (req'd) 6.0	(6.9)kΩ		
1.8	(1.4)kΩ			6.2	(9.2)kΩ		
1.9	(2.9)kΩ				` '		
2.0	(5.0)kΩ				(11.9)kΩ		
2.1	(8.1)kΩ				(14.0)kΩ		
2.2	(13.3)kΩ	(1.0)kΩ			(18.6)kΩ		
2.3	(23.7)kΩ	(2.3)kΩ			(23.0)kΩ		
2.4	(54.9)kΩ	(3.9)kΩ			(28.3)kΩ		
2.5		(5.8)kΩ		7.4	(35.0)kΩ		
2.6	59.9kΩ	(8.4)kΩ		7.6	(43.5)kΩ		
2.7	28.7kΩ	(11.7) k Ω		7.8	(55.0) k Ω		
2.8	18.3kΩ	(16.5) k Ω		8.0	(71.0) k Ω		
2.9	13.1kΩ	(23.6) k Ω		8.2	(95.0) k Ω		
3.0	10.0kΩ	(35.4)kΩ	(1.6)kΩ	8.4	(135.0) k Ω		
3.1	7.9kΩ	(59.0)kΩ	(2.3)kΩ	8.6	(215.0)kΩ		
3.2	6.4kΩ	(130.0)kΩ	(3.1)kΩ	8.8	(455.0)kΩ		
3.3	5.3kΩ		(4.0)kΩ	9.0	· · · · ·	(31.7)kΩ	
3.4	4.4kΩ	81.5kΩ	(5.1)kΩ	9.2	64.8kΩ	(36.1)kΩ	
3.5	3.8kΩ	38.3kΩ	(6.2) k Ω	9.4	26.1kΩ	(41.2)kΩ	
3.6	3.2kΩ	23.8kΩ	(7.6)kΩ	9.6	13.1kΩ	(47.1)kΩ	
		16.6kΩ		9.8	6.7kΩ	(54.1)kΩ	
3.7	2.7kΩ		(9.1)kΩ	10.0	2.8kΩ		(25.8)kΩ
3.8	2.3kΩ	12.3kΩ	(10.9)kΩ			(62.6)kΩ	
3.9	2.0kΩ	9.4kΩ	(13.0)kΩ		0.2kΩ	(72.8)kΩ	(28.3)kΩ
1.0	1.7kΩ	7.4kΩ	(15.6)kΩ			(85.7)kΩ	(31.1)kΩ
4.1	1.4kΩ	5.8kΩ	(18.7)kΩ			(102.0)kΩ	(34.1)kΩ
4.2	1.2kΩ	4.6kΩ	(22.6)kΩ			(124.0)kΩ	(37.3)kΩ
4.3	1.0kΩ	3.7kΩ	(27.6) k Ω	11.0		(155.0)kΩ	(40.9)kΩ
4.4		2.9kΩ	(34.2) k Ω	11.2		(201.0) k Ω	(44.9)kΩ
4.5		2.2kΩ	(43.6)kΩ	11.4		(278.0) k Ω	(49.3) k Ω
4.6		$1.7 \mathrm{k}\Omega$	(57.6) k Ω	11.6		(432.0) k Ω	(54.3)kΩ
4.7		1.2kΩ	(80.9)kΩ	11.8		(895.0) k Ω	(59.8)kΩ
4.8			(128.0)kΩ	12.0			(66.1)kΩ
4.9			(268.0)kΩ	12.2		94.8kΩ	(73.3)kΩ
5.0				12.4		41.1kΩ	(81.6)kΩ
5.1			88.4kΩ	12.6		23.1kΩ	(91.3)kΩ
5.2			41.7kΩ	12.8		14.2kΩ	(103.0)kΩ
5.3			26.1kΩ	13.0		8.8kΩ	(117.0)kΩ
5.4			18.4kΩ	13.2		5.2kΩ	(133.0)kΩ
5.5			13.7kΩ	13.4		2.7kΩ	(154.0) k Ω
5.6			13./kΩ 10.6kΩ	13.6		0.7kΩ	(181.0)kΩ
				13.8		U./ K\$2	(181.0)kΩ (217.0)kΩ
5.7			8.4kΩ				
5.8			6.7kΩ	14.0			(268.0)kΩ
5.9			5.4kΩ				(343.0)kΩ
6.0			4.4kΩ				(570.0)kΩ
6.1			3.5kΩ				
6.2			2.8kΩ				42.3kΩ
6.3			2.2kΩ	16.0			14.8kΩ
6.4			$1.7 \mathrm{k}\Omega$	16.5			5.6kΩ
6.5			$1.2 \mathrm{k}\Omega$	17.0			1.1kΩ

R1 = (Blue) R2 = Black

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated