

# PHOTOCOUPLER PS9601,PS9601L

## HIGH ISOLATION VOLTAGE, HIGH-SPEED 10 Mbps OPEN COLLECTOR OUTPUT TYPE 8-PIN DIP PHOTOCOUPLER -^

-NEPOC<sup>™</sup> Series-

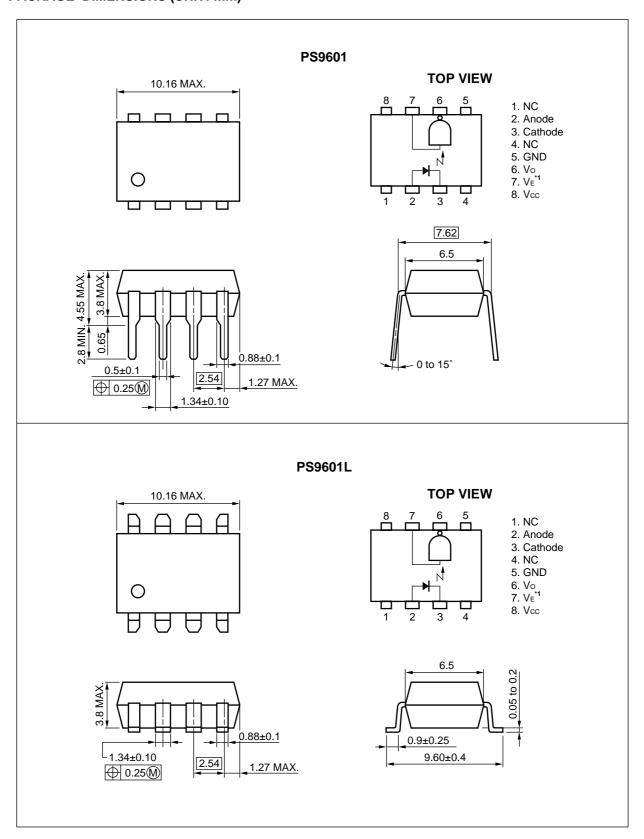
#### **DESCRIPTION**

The PS9601 and PS9601L are optically coupled isolators containing a GaAlAs LED on the input side and a photo diode and a signal processing circuit on the output side on one chip.

The PS9601 is in a plastic DIP (Dual In-line Package) and the PS9601L is lead bending type (Gull-wing) for surface mounting.

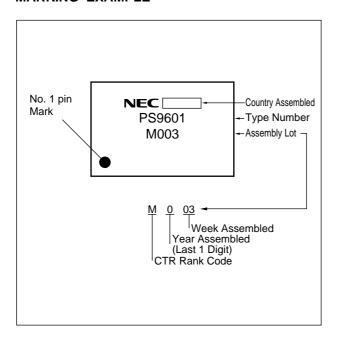
#### **FEATURES**

- High isolation voltage (BV = 5 000 Vr.m.s.)
- High-speed response (tphL, tpLH = 50 ns TYP.)
- Low threshold input current (IFHL = 2.5 mA TYP.)
- · TTL, CMOS compatible with a resistor
- Ordering number of tape product: PS9601L-E3, E4: 1 000 pcs/reel
- ★ Safety standards
  - UL approved: File No. E72422 (S)
  - BSI approved: No. 8389, 8390


### **APPLICATIONS**

- · Computer and peripheral manufactures
- · Electronic musical instruments
- Audio-visual
- Measurement equipment

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

### **★ PACKAGE DIMENSIONS (UNIT: mm)**



\*1 VE is pulled-up to

### **★ MARKING EXAMPLE**



### **★ ORDERING INFORMATION**

| Part Number | Package   | Packing Style                | Application Part Number <sup>*1</sup> |
|-------------|-----------|------------------------------|---------------------------------------|
| PS9601      | 8-pin DIP | Magazine case 50 pcs         | PS9601                                |
| PS9601L     |           |                              | PS9601L                               |
| PS9601L-E3  |           | Embossed Tape 1 000 pcs/reel |                                       |
| PS9601L-E4  |           |                              |                                       |

<sup>\*1</sup> For the application of the Safety Standard, following part number should be used.

### ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

| Parameter                      |                   | Symbol           | Ratings     | Unit    |
|--------------------------------|-------------------|------------------|-------------|---------|
| Diode                          | Forward Current   | lF               | 30          | mA      |
|                                | Reverse Voltage   | VR               | 5           | V       |
|                                | Power Dissipation | PD               | 60          | mW      |
| Detector                       | Supply Voltage    | Vcc              | 7           | V       |
|                                | Output Voltage    | Vo               | 7           | V       |
|                                | Output Current    | lo               | 50          | mA      |
|                                | Enable Voltage    | VE               | 5.5         | V       |
|                                | Power Dissipation | Pc               | 85          | mW      |
| Isolation Voltage <sup>1</sup> |                   | BV               | 5 000       | Vr.m.s. |
| Operating Ambient Temperature  |                   | TA               | -40 to +85  | °C      |
| Storage Temperature            |                   | T <sub>stg</sub> | -55 to +125 | °C      |

<sup>\*1</sup> AC voltage for 1 minute at  $T_A = 25$  °C, RH = 60 % between input and output.

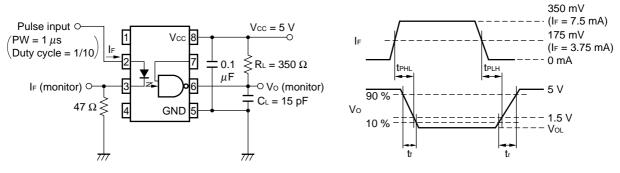
### **RECOMMENDED OPERATING CONDITIONS**

| Parameter                     | Symbol | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------|------|------|------|------|
| High Level Input Current      | lғн    | 7    | 10   | 15   | mA   |
| Low Level Input Current       | IFL    | 0    |      | 250  | μΑ   |
| High Level Enable Voltage     | VEH    | 2    |      | Vcc  | ٧    |
| Low Level Enable Voltage      | VEL    | 0    |      | 0.8  | ٧    |
| Supply Voltage                | Vcc    | 4.5  | 5.0  | 5.5  | ٧    |
| TTL (loads)                   | N      |      |      | 8    |      |
| Operating Ambient Temperature | TA     | 0    | 25   | 70   | °C   |

\*

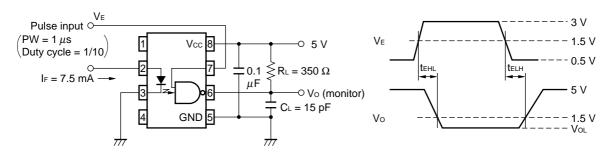


### **★ TRUTH TABLE**


| LED | Enable | Output |
|-----|--------|--------|
| Н   | Н      | L      |
| L   | Н      | Н      |
| Н   | L      | Н      |
| L   | L      | Н      |

### ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = -40 to +85 °C, unless otherwise specified)

| Parameter |                                                        | Symbol           | Conditions                                                                                                                                                                                   | MIN. | TYP.⁴¹ | MAX. | Unit |
|-----------|--------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------|------|
| Diode     | Forward Voltage                                        | VF               | IF = 10 mA, T <sub>A</sub> = 25 °C                                                                                                                                                           | 1.4  | 1.65   | 1.9  | V    |
|           | Reverse Current                                        | IR               | VR = 5 V, TA = 25 °C                                                                                                                                                                         |      |        | 10   | μΑ   |
|           | Terminal Capacitance                                   | Ct               | V = 0 V, f = 1 MHz, T <sub>A</sub> = 25 °C                                                                                                                                                   |      | 60     |      | pF   |
| Detector  | High Level Output Current                              | Іон              | $V_{CC} = V_{O} = 5.5 \text{ V}, \text{ IF} = 250 \ \mu\text{A}, \ V_{E} = 2 \text{ V}$                                                                                                      |      | 2      | 250  | μΑ   |
|           | Low Level Output Voltage                               | Vol              | $V_{CC} = 5.5 \text{ V}, \text{ IF} = 5 \text{ mA}, \text{ VE} = 2 \text{ V}, \\ \text{Io} = 13 \text{ mA}$                                                                                  |      | 0.2    | 0.6  | V    |
|           | High Level Supply Current                              | Іссн             | Vcc = 5.5 V, VE = 0.5 V, IF = 0 mA                                                                                                                                                           | 5    | 7      | 10   | mA   |
|           | Low Level Supply Current                               | Iccl             | Vcc = 5.5 V, VE = 2 V, IF = 10 mA                                                                                                                                                            | 10   | 13     | 18   | mA   |
|           | High Level Enable Current                              | Ієн              | Vcc = 5.5 V, VEH = 2 V                                                                                                                                                                       | -0.7 | -1     | -1.5 | mA   |
|           | Low Level Enable Current                               | lel              | Vcc = 5.5 V, VEL = 0.5 V                                                                                                                                                                     | -1   | -1.4   | -2   | mA   |
| Coupled   | Threshold Input Current $(H \rightarrow L)$            | IFHL             | $\begin{aligned} &\text{Vcc} = 5 \text{ V, V}_{\text{E}} = 2 \text{ V, Vo} = 0.8 \text{ V,} \\ &\text{RL} = 350 \Omega \end{aligned}$                                                        | 0.5  | 2.5    | 5    | mA   |
|           | Isolation Resistance                                   | Rı-o             | V <sub>I-O</sub> = 1 kV <sub>DC</sub> , RH = 40 to 60 %,<br>T <sub>A</sub> = 25 °C                                                                                                           | 1011 |        |      | Ω    |
|           | Isolation Capacitance                                  | C <sub>I-O</sub> | V = 0 V, f = 1 MHz, T <sub>A</sub> = 25 °C                                                                                                                                                   |      | 0.6    |      | pF   |
|           | Propagation Delay Time $(H \rightarrow L)^{^{*2}}$     | <b>t</b> PHL     | $\label{eq:Vcc} \begin{array}{l} \mbox{Vcc} = 5 \mbox{ V, I}_F = 7.5 \mbox{ mA, RL} = 350 \ \Omega, \\ \mbox{C}_L = 15 \mbox{ pF, T}_A = 25 \mbox{ °C} \end{array}$                          |      | 50     | 75   | ns   |
|           | Propagation Delay Time $(L \rightarrow H)^{^{*2}}$     | tрLН             |                                                                                                                                                                                              |      | 50     | 75   | ns   |
|           | Rise Time <sup>'2</sup>                                | tr               |                                                                                                                                                                                              |      | 20     |      | ns   |
|           | Fall Time <sup>'2</sup>                                | tf               |                                                                                                                                                                                              |      | 10     |      | ns   |
|           | Enable Propagation Delay Time $(H \rightarrow L)^{"3}$ | tehl             | $V_{\text{CC}} = 5 \text{ V, I}_{\text{F}} = 7.5 \text{ mA, V}_{\text{EH}} = 3 \text{ V,} \\ V_{\text{EL}} = 0.5 \text{ V, R}_{\text{L}} = 350 \ \Omega, \ C_{\text{L}} = 15 \text{ pF,} \\$ |      | 10     |      | ns   |
|           | Enable Propagation Delay Time $(L \rightarrow H)^3$    | telh             | T <sub>A</sub> = 25 °C                                                                                                                                                                       |      | 25     |      | ns   |


5

- ★ \*1 Typical values at T<sub>A</sub> = 25 °C
  - \*2 Test circuit for propagation delay time

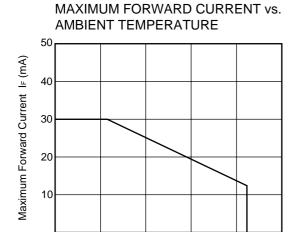


C<sub>L</sub> includes probe and stray wiring capacitance.

\*3 Test circuit for enable propagation delay time



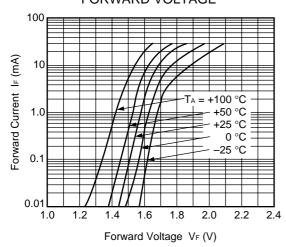
 $\ensuremath{\text{C}_{\text{L}}}$  includes probe and stray wiring capacitance.


### **★ USAGE CAUTIONS**

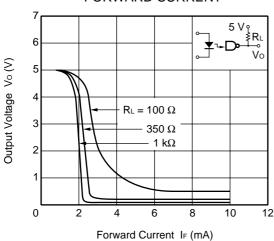
- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1  $\mu$ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.

0

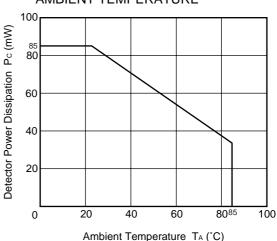
### **★** TYPICAL CHARACTERISTICS (T<sub>A</sub> = 25 °C, unless otherwise specified)


100

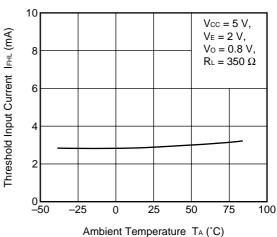



40

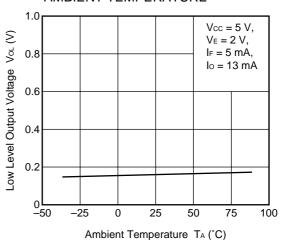
FORWARD CURRENT vs. FORWARD VOLTAGE


Ambient Temperature TA (°C)

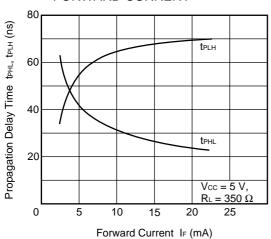



OUTPUT VOLTAGE vs. FORWARD CURRENT

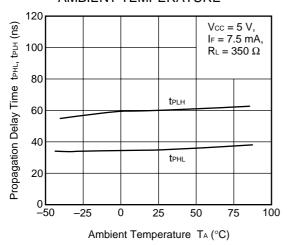



DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

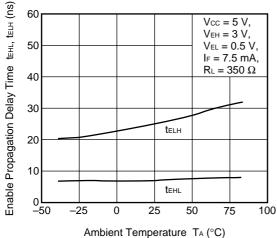



THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE



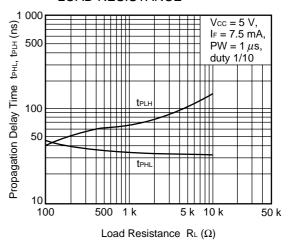

LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE



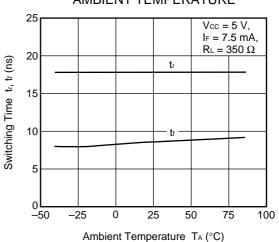

### PROPAGATION DELAY TIME vs. FORWARD CURRENT



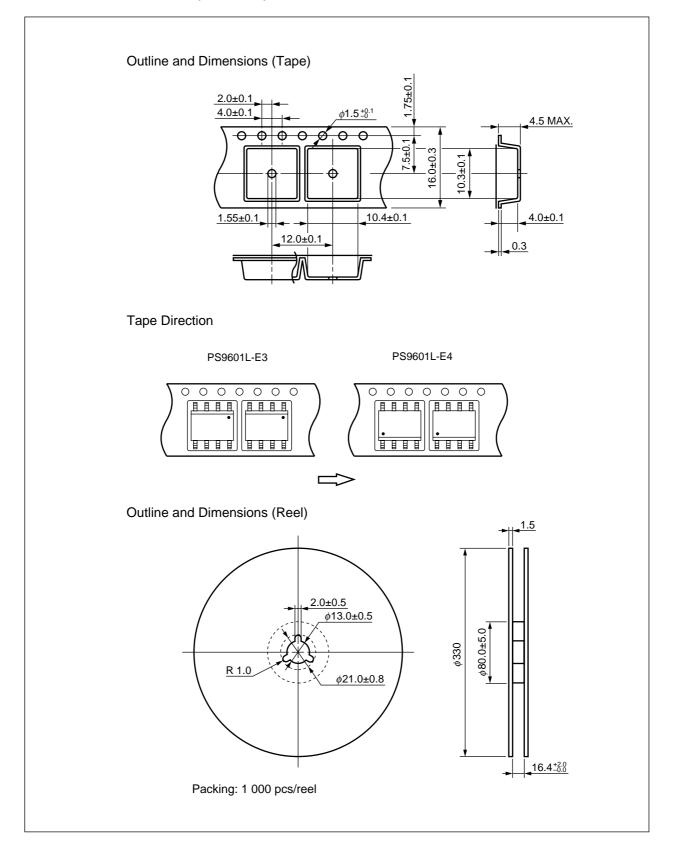
### PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE




### ENABLE PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE




**Remark** The graphs indicate nominal characteristics.


### PROPAGATION DELAY TIME vs. LOAD RESISTANCE



### SWITCHING TIME vs. AMBIENT TEMPERATURE



### **★ TAPING SPECIFICATIONS (UNIT: mm)**

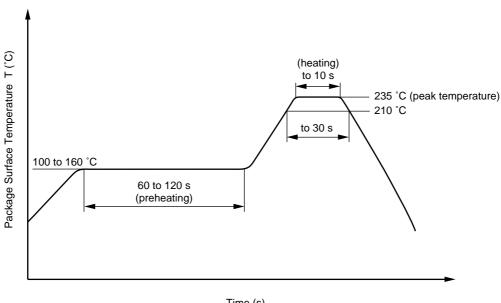


#### **★ NOTES ON HANDLING**

### **Recommended soldering conditions**

### (1) Infrared reflow soldering

Peak reflow temperature
 235 °C or below (package surface temperature)


• Time of temperature higher than 210 °C 30 seconds or less

Number of reflows
 Three

• Flux Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt % is recommended.)

### Recommended Temperature Profile of Infrared Reflow



Time (s)

### (2) Wave soldering

• Temperature 260 °C or below (molten solder temperature)

• Time 10 seconds or less

• Preheating conditions 100 °C or below (package surface temperature)

• Number of times One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt % is recommended.)

### (3) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

[MEMO]

#### SAFETY INFORMATION ON THIS PRODUCT

| •    |    | •  |   |
|------|----|----|---|
| 1 21 | -  | Ю  | n |
| vai  | uц | ıv |   |

**GaAs Products** 

The product contains gallium arsenide, GaAs.

GaAs vapor and powder are hazardous to human health if inhaled or ingested.

- Do not destroy or burn the product.
- Do not cut or cleave off any part of the product.
- · Do not crush or chemically dissolve the product.
- · Do not put the product in the mouth.

Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.

#### NEPOC is a trademark of NEC Corporation.

- The information in this document is current as of May, 2001. The information is subject to change
  without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
  books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
  and/or types are available in every country. Please check with an NEC sales representative for
  availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
  third parties by or arising from the use of NEC semiconductor products listed in this document or any other
  liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
  patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
  purposes in semiconductor product operation and application examples. The incorporation of these
  circuits, software and information in the design of customer's equipment shall be done under the full
  responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
  parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
  - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4