TARGET SPECIFICATION # PI3B72211 # 3.3V, Hot Insertion, 72-Bit Bus Switch ## **Product Features** - · Near-zero propagation delay - 5-ohm switches connect inputs to outputs - Fast Switching Speed 4.5ns max. - · Permits Hot Insertion - Vcc operating range: 3.0V to 3.6V - Industrial operating temperature: -40°C to +85°C - Packages available: - -168-ball Thin Fine Pitch Ball Grid Array, GFPBGA # **Product Description** Pericom Semiconductor's PI3B series of logic circuits are produced using the Company's advanced submicron CMOS technology. The PI3B16211 is a 3.3 volt, hot insertion, 24-bit bus switch designed with a low ON resistance allowing inputs to be connected directly to outputs. This device operates as a 24-bit or a as 12-bit bus switch that provides high-speed bus switching. # Logic Block Diagram 1 ### Truth Table | xŌE | yOE | xA, xB I/Os | yA, yB I/Os | |-----|-----|-------------|-------------| | L | L | xA = xB | YA = YB | | L | Н | xA = xB | Z | | Н | L | Z | YA = YB | | Н | Н | Z | Z | # **Product Pin Description** | Pin Name | I/O | Description | |-----------------------------------|-----|---------------| | x OE , y OE | I | Select Inputs | | x,yAn | I/O | Bus A | | x,yAn | I/O | Bus B | ### Note: 1. H = High Voltage Level L = Low Voltage Level Z = High Impedance x = 1, 3, 5 Y = 2,4,6 N = 1 through 12 PXXXX 08/09/01 ### TARGET SPECIFICATION PI3B72211 3.3V, Hot Insertion, 72-Bit Bus Switch ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature | |--| | Ambient Temperature with Power Applied $-0^{\circ}C$ to $+85^{\circ}C$ | | $Supply \ Voltage \ Range \ -0.5 V \ to +4.6 V$ | | DC Input Voltage -0.5 V to $+4.6$ V | | DC Output Current | | Power Dissipation | | | #### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ## **DC Electrical Characteristics** (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.0$ V to 3.6V | Parameters | Description | Test Conditions(1) | Min. | Typ. (2) | Max. | Units | |-------------------|-------------------------------------|---|------|-----------------|---------|-------| | V_{IH} | Input HIGH Voltage | Guaranteed Logic High Level | 2.0 | | | V | | $V_{ m IL}$ | Input LOW Voltage | Guaranteed Logic Low Level | -0.5 | | 0.8 | | | I_{IH} | Input HIGH Current | $V_{CC} = Max.; V_{IN} = V_{CC}$ | | | ±1 | μA | | $I_{ m IL}$ | Input LOW Current | $V_{CC} = Max.; V_{IN} = GND$ | | | ±1 | | | I _{OZH} | High Impedance Output Current | $0 \le A, B \le V_{CC}$ | | | ±1 | | | V _{IK} | Clamp Diode Voltage | $V_{CC} = Min, I_{IN} = -18mA$ | | -0.7 | -1.2 | V | | R _{ON} | Switch ON Resistance ⁽³⁾ | $V_{CC}=Min.,\ V_{IN}=0.0V,\ I_{ON}=48mA$ or $64mA$ $V_{CC}=Min.,\ V_{IN}=2.4V,\ I_{ON}=15mA$ | | 5
10 | 8
15 | Ω | ## Capacitance ($T_A = 25^{\circ}C, f = 1 \text{ MHz}$) | Parameters ⁽⁵⁾ | Description | Test Conditions | Тур. | Units | |---------------------------|-----------------------------|-----------------|------|-------| | C_{IN} | Input Capacitance | | 3.0 | | | $C_{ m OFF}$ | A/B Capacitance, Switch Off | $V_{IN} = 0V$ | 8.5 | pF | | C _{ON} | A/B Capacitance, Switch On | | 17.0 | | #### **Notes:** - 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. - 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C ambient and maximum loading. - 3. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins. 2 4. This parameter is determined by device characterization but is not production tested. PXXXX 08/09/01 **Power Supply Characteristics** | Parameters | Description | Test Conditions(1) | | Min. | Typ ⁽²⁾ | Max. | Units | |------------------|---|--|----------------------------|------|---------------------------|------|------------| | I_{CC} | Quiescent Power Supply Current | $V_{CC} = Max.$ | $V_{IN} = GND$ or V_{CC} | | | 30 | μА | | ΔI_{CC} | Supply Current per Input @ TTL High | $V_{CC} = Max.$ | $V_{IN} = 3.0V^{(3)}$ | | | 750 | | | I _{CCD} | Supply Current per Input per MHz ⁽⁴⁾ | V _{CC} = Max.
A & B Pin Open
Control Input Toggling
50% Duty Cycle | | | | 0.25 | mA/
MHz | #### **Notes:** - 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device. - 2. Typical values are at $V_{CC} = 3.3V, +25^{\circ}C$ ambient. - 3. Per TTL driven input (control inputs only); A and B pins do not contribute to I_{CC}. - 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design. $R_L = 500$ ohms, R = 500 ohms. ## Switching Characteristics over Operating Range | | | | Com. | | | |--------------------------------------|---|---|------|------|-------| | Parameters | Description | Conditions ⁽¹⁾ | Max. | Min. | Units | | t _{PLH}
t _{PHL} | Propagation Delay ^(2,3) Ax to Bx, Bx to Ax | $C_L = 50 pF,$ | | 0.25 | | | t _{PZH}
t _{PZL} | Bus Enable Time
BE to Ax or Bx | $R_L = 500 \text{ ohms}$
R = 500 ohms | 1 | 4.5 | ns | | t _{PHZ}
t _{PLZ} | Bus Disable Time
BE to Ax or Bx | | 1 | 5.0 | | #### **Notes:** - 1. See test circuit and waveforms. - 2. This parameter is guaranteed but not tested on Propagation Delays. - 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side. 3 Applies to t_{PZX}, t_{PXZ}. ## TARGET SPECIFICATION PI3B72211 3.3V, Hot Insertion, 72-Bit Bus Switch | 168-Ball Thin Fine Pitch Ball Grid Array, GFPBGA | | |--|--| # **Ordering Information** | Part | Pin | Package | Width | Temperature | |------------|-----|---------|-------|---------------| | PI3B72211A | 168 | TFPBGA | TBD | −40°C to 85°C | **Pericom Semiconductor Corporation**