IS74

AN1356
APPLICATION NOTE

PSDsoft Express and PSD4235G2 Design Guide

CONTENTS

PHYSICAL CONNECTION

FIRST DESIGN EXAMPLE

- ISP CAPABLE SYSTEM,

LIMITED IAP

— Memory Map

— PSDsoft Express Design
Entry

SECOND DESIGN

EXAMPLE - ISP, FULL IAP

& CPLD LOGIC

ELEMENTS

— Memory Map

— PSDsoft Express Design
Entry

THIRD DESIGN EXAMPLE

— ISP AND ADVANCED

IAP

— Memory Map

— PSDsoft Express Design
Entry

CONCLUSION

REFERENCES

September 2001

EasyFLASH™ PSD4X35G2 devices are members of a family
of Flash memory-based peripherals for use with embedded
microcontrollers (MCUs) or microprocessors (MPUs). These
Programmable System Devices (PSDs) consist of memory,
logic, and I/O. When coupled with a low-cost, ROM-less MCU/
MPU, the PSD forms a complete embedded Flash memory
system that is 100% In-System-Programmable (ISP). There
are many features in the PSD silicon and in the PSDsoft
Express™ development software that make ISP easy for you,
regardless of how much experience you have in embedded
Flash memory design.

This document offers three designs using an ST PSD4235G2
and a Philips P51XA MCU. Note that a variety of 16-bit MCU/
MPUs can be used in place of the Philips part. Although the
specifics of this document are based on the P51XA-G30, this
document can be used as a guide for other MCU/MPU
applications. The first design is a simple system to get up and
running quickly for basic applications, or to check out prototype
hardware. The second design illustrates the use of concurrent
memory operation for field-updates and includes the use of
programmable logic. The third design highlights advanced
concurrent memory operation. You can start with the first
design and migrate to the second and third as your
requirements grow. Another member of the PSD4X35G2
family, the PSD4135G2, is a lower cost device with a subset of
features of the PSD4235G2. See data sheets and AN1426 for
details.

In-System Programming and In-Application
re-Programming

Our industry uses the term In-System Programming, or ISP, in
a general sense. ISP is applicable to programmable logic, as
well as programmable Non-Volatiie Memory (NVM). An
additional term is used in this document: In-Application re-
Programming (IAP). There are subtle yet significant differences
between ISP and IAP when microcontrollers are involved. ISP
of memory means that the MCU is off line and not involved
while memory is being programmed. IAP of memory means
that the MCU participates in programming memory, which is
important for systems that must be online while updating
firmware. Often, ISP is well suited for manufacturing, while IAP
is appropriate for field updates. PSD4X35G2 devices provide

1/49

Rev. 01A

AN1356 - APPLICATION NOTE

both ISP and IAP. Keep in mind that IAP can only program the memory sections of the PSD, not the
configuration and programmable logic portions. ISP can program all areas of the PSD.

The IAP Problem

Typically, a host computer downloads firmware into an embedded Flash memory system through a
communication channel that is controlled by the MCU. This channel is usually a UART, but any
communication channel that the MCU supports will do (CAN, MODEM, USB, J1850, etc). The MCU must
execute the code that controls the IAP process from an independent memory array that is not being erased
or programmed. Otherwise, boot code and Flash memory programming algorithms (IAP loader code) will
be unavailable to the MCU. It is absolutely necessary to use an alternate memory array (an independent
memory that is not being programmed) to store the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
Flash memory, or EEPROM) as each type has advantages and disadvantages. This alternate memory
may reside external to the MCU or on-board the MCU. A top-level view of an embedded IAP Flash memory
system with external memory is shown in Figure 1.

Figure 1. Embedded Flash memory system capable of IAP (5 devices)

Main Flash Memory
Host N 256 KBytes
Computer 16-bit | R | N Alternate Memory
MCU/MPU for IAP Loader Code
T CPLD
< System SRAM
E Communication C 8 KBytes
Channel
[«—>System I/O

Embedded System

Al04059

A Common Solution

Without a PSD device, implementing IAP with the P51XA and most other 16-bit MCUs can be difficult,
expensive, and time consuming. Many P51XA designers will use external or internal PROM to implement
a boot-loader using the P51XA UART to download code from a host computer into P51XA SRAM (Philips
application note AN97019). P51XA execution then jumps to the SRAM to execute the remainder of the
download process to program Flash memory. This is a cumbersome and error prone exercise using re-
locatable code in volatile memory which is difficult to debug, vulnerable to power outages, and not
supported by all emulators. Additionally, it is an expensive task to update the IAP loader code that is stored
in PROM.

A Better, Integrated Solution

Figure 2 shows a two-chip solution using an EasyFLASH PSD4235G2. This system has ample main Flash
memory, a second alternate Flash memory to hold the IAP loader code and general data, and more
SRAM. All three of these memories can operate independently and concurrently; meaning the MCU can
operate from one memory while erasing/writing the other. This allows the MCU to continue normal
operation (at possibly a reduced level) during IAP, which is crucial for some applications. This system also
has programmable logic, expanded I/O, and design security. The two-chip solution is 100% programmable
in the factory or in the field.

2149 573

AN1356 - APPLICATION NOTE

Figure 2. Embedded Flash memory system capable of ISP and IAP (2 devices)

PSD4x35G2
Host JTAG
Computer P] 512 KByte Flash “>1sp
16-bit 32 KByte Flash
MPU/MCU | 8KByte SRAM System
= _ Programmable Logic 110
Communication 110
Channel
Embedded System

Al04060

By design, the IAP method described above requires MCU patrticipation to exercise a communication
channel to implement a download to the main Flash memory. The PSD4235G2 also offers an alternative
method (ISP) to program the PSD using a built-in IEEE-1149 JTAG interface requiring no MCU
participation. This means that a completely blank PSD can be soldered into place and the entire chip can
be programmed in-system in just a few seconds using ST’s FlashLINK™ JTAG cable and PSDsoft
development software. No P51 XA firmware needs to be written, just plug in the FlashLINK™ cable to your
PC parallel port and begin programming memory, logic, and configuration. This is a powerful feature of
the PSD4235G2 that allows immediate development of application code in your lab, smart manufacturing
techniques, and easy field updates.

PSDsoft Express is available from our website. The availability of the FlashLINK™ cable is also detailed
there.

Let's take a quick look inside the EasyFLASH™ PSD4235G2, as shown in Figure 3. You can see the three
independent memory arrays, which are selected on a segment basis when the proper MCU address is
decoded in the Decode PLD. The page register participates in memory decoding, which greatly simplifies
paging. The MCU address, data, and control signals are routed throughout the chip and can be used within
the Complex PLD (CPLD). The CPLD has 16 Output Microcells (OMCs), each containing a flip-flop and
combinatorial logic. The CPLD also has 24 Input MicroCells (IMCs) used for conditioning incoming
signals. The MCU has direct memory-mapped access to both OMCs and IMCs. Additionally, the CPLD
contains 8 programmable external chip-select outputs. There are 52 1/O pins that can be individually
configured for many different functions. A power management scheme can selectively shut down parts of
the chip and tailor special power saving mechanisms on-the-fly. The security feature can block access to
all areas of the chip from a device programmer/reader. Finally, the self-contained JTAG-ISP controller
allows programming of all areas of the chip.

In the second design example of this document, you will see how to use the CPLD to implement a loadable
counter, a state machine, combinatorial logic, and other functions using OMCs, IMCs, the page register,
and external chip-selects.

J

3/49

AN1356 - APPLICATION NOTE

Figure 3. Top Level Block Diagram of PSD4235G2

A

\/

A

PSD4235G2 MCU Address / Data / Control Bus
© <> < >
g » F';age 512 KByte T
N -
) . 8 = g P8r|g1ary Flash [« | P
< »0 o egments @
= o]
g Q
S > -
< 32 KByte
N Decode —» Second Flash [« >
”| PLD 4 Segments
(2]
@
5 o 8 KByte SRAM
» O E a
> Q
o > Power CPLD < >
< » Mngt 16 Output [
MicroCells (OMC), >
> 24 Input < >
Q ? > MicroCells (IMC)
S 35
[8 < >
0@ > o 8 External >
Chip-selects <>
N _| JITAG Controller [« >

\/

A

| /O Port D | | /0 Port C | | /O Port B | | /0 Port A |

Al04068

\

PHYSICAL CONNECTION

Connect your P51XA to the PSD4235G2 as shown in Figure 4. The JTAG programming channel, LCD
module, system 1/O, MCU 1/O signals, and battery back up are optional. They are present in this

application note to illustrate PSD functions.

There are four unused PSD 1/O pins in this example. Unused pins should be pulled to Vcc with a 100K
resistor or tied to GND. Also, see Application Note 54 for more information on the JTAG-ISP connection

options.

4/49

J

AN1356 - APPLICATION NOTE

Figure 4. Physical Connections, P51XA and PSD4X35G2

d0-d7 1 patA BUS
P51XA-G30 PSD4235G2-70
Up to 27 MHz 2x16 LCD
XTALL [PFO PBO :gg fw E MODULE
] PL.1/AL > PF1 PBL [Ei—20 RIW
P1.2/A2 3 PF2 pe2 & 1Rs
F——— xTac2 P1.3/A3 2 PF3 PB3 |—
= PB4
IEANpp/WAIT adldo PB5 [£5°———{ > SYSTEMOUTPUTS
L P0.0/A4DO T ADIOO PB6 W SYSTEM INPUTS
P0.1/ASD1 Y ADIOL pp7 |BEAUENCE OK ™ SySTEM OUTPUTS
— Pr6m2 P0.2/A6D2 ST ADIO2 strobed in 0
— P1L7T2EX P0.3/A7D3 S ADIO3 PAO 2o
— P3.4/T0 P0.4/A8D4 ST ADIO4 PAL [2open—
P0.5/A9D5 al0/d6 ADIOS PA2 strobed_in_3
UART PL4/RxD1 P0.6/A10D6 YR ADIO6 PA3 [00— 1 SYSTEM
portl PL5/TxD1 P0.7/A11D7 ADIO7 pag [ErOREC N 27 \\puTs
strobed_in_5
al2/d8 PAS strobed_in_6
UART P3.0/RXD0 P2.0/A12D8 YETT) ADIO8 PAG [ot
port0 P3.1/TXxD0 P2.1/A13D9 141410 ADIO9 pay BHoRedin £
P2.2/A14D10 ADIO10)
Vee Vee Vee P2.3/A15D11 aiggi; ADIO11 pco jmeuio Cg
P2.4/A16D12 :17/d13 ADIO12 pC1 mﬂ:g 22
P2.5/A17D13 ST ADIO13 PC2 [hesa-bes
P2.6/A18D14 T ADIO14 PC3 WPM_D GENERAL
P2.7/A19D15 ADIO15 pc4 |HREUO D2~ pyRPOSE I/0
PC5 mcu!o C(55
ToK a7k a7k P3.6/IWRL VrV(;' CNTLO (IWR) PCs fratabe—
B3 2MINTO P3.7/IRD CNTLL (IRD) pcy pmedo el =
psen
3 3MINTL IPSEN CNTL2 (IPSEN) e |meuio ota
ALE/IPROG ale PDO (ALE) pF5 focuo bbb ¢ Ig > GENERAL
P3.5TL/BUSW PD1 (CLKIN) PF6 —‘)—Hz:g = PURPOSE /0
wh | —] Pp2(csy pr7 pReuo Pl —
P1.0/AO0/WRH PD3 (WRH))
PGO mcu!o 0
IRST reset IRESET pG1 |meuio pgl
PG2 mCU!O 2
PG3 mcuio 3 GENERAL
pGa4 |meuio ;1 PURPOSE I/O
mcuio
[—>_SYSTEM CLOCK ESZ moio B3
PG7 meuio_pg7 = Vce
[—_SYSTEM RESET T
PEO (TMS) :::(S
PE1(TCK) |
PD2 (TDI) [o JTAG-ISP
PE3 (TDO) tstat Connector
PE4 (TSTAT) [& ——
PE5 (ITERR) RSt
PE6 (VSTBY) -
PE7 (VBATON) [
ithium attery I
Al04071

Note: Pullup (100K) or ground all unused inputs.
P51XA internal bus control register settings for 70ns

J

5/49

AN1356 - APPLICATION NOTE

FIRST DESIGN EXAMPLE - ISP CAPABLE SYSTEM, LIMITED IAP

The first design example is capable of ISP and limited IAP. It outlines the steps required to get a Flash
memory P51XA system up and running quickly. The 32 KBytes of PSD secondary Flash memory will be
programmed with P51XA firmware (over the JTAG-ISP channel) that will execute low-level system
hardware tests. This firmware is also able to access 512 KBytes of main PSD Flash memory, used as data
only — not program space. This provides a way to develop code to erase and write to main PSD Flash
memory while executing from secondary Flash memory. The second and third design examples take full
advantage of concurrent memory operation and IAP, by allowing program execution from main Flash
memory in addition to writing to it. You should become familiar with this first design before using the
second and third.

Memory Map

For this first simple design, a PSD4235G2 is used with the following memories:

= 512 Kbytes main Flash memory, broken into eight 64 Kbyte segments denoted fs; (j = 0-7)

32 Kbytes secondary Flash memory, broken into four 8 Kbyte segments denoted csboot; (j = 0-3).
8 Kbyte SRAM denoted rsO

m 256-byte PSD4235 control registers denoted csiop.

Note: PSD memory segment address locations are defined using PSDsoft Express™.

We’'ll use the PSD’s secondary Flash memory to hold the boot code, P51XA interrupt vectors, hardware
drivers, and common functions including routines that erase/program main PSD Flash memory. For this
example, we’ll execute from the PSD’s secondary Flash memory only and use the PSD’s main Flash
memory as data. See the memory map in Figure 5.

J

6/49

AN1356 - APPLICATION NOTE

Figure 5. Memory Map: Simple P51XA/PSD4235G2 Design

8FFFFh

08000h
06000h - 07FFFh

04000h - O5FFFh
02000h - 03FFFh
00000h - 01FFFh

(Note 1)

P51XA
Program Space

P51XA
Data Space

nothing mapped

fsO
64K bytes PSD
Main Flash

fs7
64K bytes PSD
Main Flash

fs6
64K bytes PSD
Main Flash

fs5
64K bytes PSD
Main Flash

fs4
64K bytes PSD
Main Flash

fs3
64K bytes PSD
Main Flash

fs2
64K bytes PSD
Main Flash

fsl
64K bytes PSD
Main Flash

nothing mapped

rs0, 8k bytes PSD SRAM

csboot3, 8Kb PSD 2nd Flash

csiop, PSD cnti regs

csboot2, 8Kb PSD 2nd Flash

Icd_e, ext LCD chip sel

csbootl, 8Kb PSD 2nd Flash

nothing mapped

csboot0, 8Kb PSD 2nd Flash

P51XA-G3 Regs/SRAM

8FFFFh

80000h
7FFFFh

70000h
6FFFFh

60000h
5FFFFh

50000h
4FFFFh

40000h
3FFFFh

30000h
2FFFFh

20000h
1FFFFh

10000h
OFFFFh

0A00Oh

08000h - 09FFFh
07000h - 070FFh
06000h - 06001h
00400h - O5FFFh
00000h - 003FFh

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

Al04072

Note: 1. P51XA firmware gets programmed here by JTAG-ISP or conventional programmer tool.

PSDsoft Express Design Entry
Highlights of design entry are given here. Follow along using PSDsoft Express if you wish.

Open a New Project

m Invoke PSDsoft Express.

= Create a new project.

= Select your project folder and name the project (in this example, name the project “simpleXA” in the
folder PSDexpress\my_project).

= Select an MCU. In this example, we're using a Philips P51XAG3x.
= Select /WRL, /RD, /PSEN, /WRH, Burst Mode for the control signals.

= Select the PSD4000 series for the PSD Family.

m Select a PSD4235G2 and use the 80-pin TQFP package (U package).
= Based on the above selections, the MCU bus will be automatically set to 16-bits multiplexed.

= Select the main PSD Flash memory to reside in Data space upon power-up.

573

7/49

AN1356 - APPLICATION NOTE

= Select the secondary PSD Flash memory to reside in Program space upon power-up.

The selection of Program space or Data space for the Flash memories determines whether or not the
P51XA signals, PSEN or RD respectively, will activate the output enables of the individual PSD Flash
memory arrays upon power up. You will learn in the second and third designs that this setting can be
changed by MCU firmware at runtime to implement IAP. Note that this applies only to MCUs with the
Harvard architecture (separate address spaces for code and data). For MCUs with Von Nueman
architecture (a single linear address space for code and data), the menu choice for Program and Data
space does not apply and does not appear.

Now you have your project established based on a PSD4235G2 and a P51XAG3. The PSD will be
compatible with the “burst mode” feature, unique to the P51XA, meaning that the special use of the lower
four non-multiplexed address bits (a0..a3), the shifting of the upper address bits (a4..a19), and opcode
reads with no ALE pulse are automatically supported by the PSD.

Although this document uses the Philips P51XA as a detailed example, the methods and examples within
are very similar for other MCU/MPUs. PSD silicon adapts to many different MCU/MPU interfaces
automatically based on selections in PSDsoft.

MCU and PSD Selection
This is what the screen should look like after you've made the selections:

Figure 6. MCU and PSD Selection

MCU and P5D Selection E3
—Step 1: Select Microcontroller [MCU]——— - Step 2: Specify the PSD device
Select an MCU and itz contral zignal options. 1F your MCU does Uze product selection wizard.

nat appear an the list, select 'Other’, then specify itz cantral signal \wiizard
configuration. Check latest MCU and PSD data sheets to confirm (=l |

AC timing compatibility,

PSD Farnily: IF'SD4DDD j
M anufacturer: IF'hiIipS j Part Mumber IF'SD4235I32 j
Type: IF'51><.¢.|33:-: j Fackage: IU [80-Pin TQFP) j
Contial Signals: (R /RO, /PSEN, MFH, BustMode ¥ || oltage: 454650

—Step 3: MCU Parameters

Select a particular configuration for the WMCU/PSD interconnection.

Bus Width: [16bi [~
Bus Mode: IMuItipIexed Bus j
ALE/AS Active-lesvel IHigh j

tdain PSD flazh mermary will reside in this space at power-up:

Secondary PSD fagh memon will rezide in this zpace at power-up: IF'mgram Space Oy j

— Description far any selection above

This choice zets the initial configuration of how the main PSD flash memony output enable signal is activated. «
The resulting configuration takes affect upon power-up or system rezet and remains in affect until the MCL
optionally avernides the settings at run-time using the PSD contral reqizter named """

Program Space Only =» Chooze this o allow the main PSD flazh memaony aray o dive the WMCU data bus
while the PSEM gignal iz active which places all of the main PSD flazh gectorz into "program'’ space.

=
QK I Cancel |

J

8/49

AN1356 - APPLICATION NOTE

Click OK. Now you will be asked if you want to use the Design Assistant, Extended Design Assistant, or
a example template as shown:

Figure 7. Design Assistant Selection

Design Parameters

Chooze the method by which pou will enter powur dezsign

8 U e Extended Dezign Asziztant
" Use example template selection

Description:

ou will be led through point and click choices to create a
dezign that requires zimple programmable [ogic.

Choose Design Assistant. This will help you become familiar with most of the flow of PSDsoft Express.
We'll use the Extended Design Assistant in the second design example.

For any of the three choices, ABEL HDL statements are automatically generated for you behind-the-
scenes based on your point-and-click design entry. These statements include pin, node, and signal
declarations as well as logic equations.

The Design Assistant choice does not allow editing access to these generated ABEL statements, which
is typically not necessary for simpler designs.

It is sometimes necessary to edit or add statements to the generated ABEL file for more complicated PLD
designs that use counters, shift registers, state machines, etc. In these cases, the Extended Design
Assistant should be chosen, allowing you to add ABEL statements in designated sections of the
generated file that will not be affected by subsequent design iterations in the point-and-click entry
environment. You will learn how to do this in design number two.

In future designs you may choose to use a pre-defined example template, which will make many of the
choices for you based on your selection of MCU and PSD — you just have to tailor the template to fit your
design. But again, there is no ability to edit HDL language statements". Use this mode to get a suggested
memory map from ST based on the MCU/MPU and PSD combination that you have chosen. Note that not
all MCU/MPU selections will produce a choice for a pre-defined example template in which case only two
choices will be available: the Design Assistant and Extended Design assistant.

"At a later point in your design cycle, regardless of which of the three methods you have chosen, you may
optionally “turn on” the ability edit ABEL equations. We’'ll see how to do this in the second design example.
Note that this is not available for the PSD9XXF and PSD4135G2 devices that have a simple PLD section.

Pin Definitions

Next you are taken to the “Pin Definitions” screen, which allows you to define each PSD pin function one-
by-one on a point-and-click basis. Notice that the PSD pins connecting to the MCU are already defined for
you because their function is fixed. For this first simple design, you need only to define a few pins that are
listed below. In the second design example we use all of the signals shown in the schematic of Figure 4.

m Define an active-high chip select output on Port B pin pb0. Choose External chip select — Active-HI
from the CPLD Output section and name it “lcd_e”. Click Add.

573 o149

AN1356 - APPLICATION NOTE

m Define a combinatorial CPLD output on Port B pin pb1l. Choose Combinatorial from the CPLD Output
section and name it “lcd_rw". Click Add.

m Define a combinatorial CPLD output on Port B pin pb2. Choose Combinatorial from the CPLD Output
section and name it “lcd_a0”. Click Add.

m Define an additional JTAG-ISP pin on Port E pin pe4. Choose Dedicated JTAG — TSTAT from the
Other section. Click Add . Notice the name “tstat” is automatically included. Also notice that the signal
“ _terr” is automatically added to Port E pin pe5. These two signals work together as a pair to reduce
JTAG-ISP programming time by 10% — 15%. See application note 54 on our web site for details.

» Define a pin to accept a battery voltage input for PSD SRAM on Port E pin pe6. Choose SRAM standby
voltage input from the Other section. Click Add. The name “vstby” is automatically included.

Your Pin Definition screen should now look like the screen capture below:

J

10/49

AN1356 - APPLICATION NOTE

Figure 8. Pin Definition Screen

“J Pin Definitions M= E
Define each pin by repeating the following steps: || — Step 2: Pin Function —
{standard pins already defined) Define the pin function, then click the
— Step 1: Select a pin on the chip diagram below. — Add/Update button. Return to step 1
repeat far next pin.
a4 adicl pcl & ACHIEE
ah adiol pcl
ah = adio? poe — Fin Function
- adio3 pcic] — CPLD Input
a6 adiod pcd © " Logic or address
a9 - adiDE . " Latched address
ol - adeE pe " FT clocked register
 adio? T —
a1z ~ adiod pd ol " FT clocked latch
ali ¢ adiod pdl
ald adioll pdz — CPLD Output
 adiol pd3 " Combinatorial
alk adiol2 pel tms " Register
a1/ e adfo13 . td_ﬁ ' External chip select- Active-Hi
alf = adiol4 pe teli ~ : D
r adiols ped ¢ == External chip select - Active-Lo
_wirl ¢ cntld ped tstat
_psen ™ cntl2 peh _terr — Other
rd " cntll peb wathy " MCU IO mode
£ _reset pe?c] " MCU {0 made with pin enable
= pal pfl al
" pal pfl al
r pa? pfe © a7 Update | Delete
| pe o
= pad ptd — Step 3 (Final Step) —
' pab piG Cl@ck N_ext)) after _aII pins are defined.
r pob pfé Cl!ck\ﬁew at amy time to check progress.
Click Done to sawve the update and close.
[o prell_] _
= & pho pgl Wiew | MNext>> | Cancel | Cane |
lced_rwe " phbl pgl
lcd_al ph2 pge
[i pws Pl]
" phd pgd
" phb poh
" phb pob
I (s kel I
=

You can view a summary of your pin definitions by clicking the View button. When you are satisfied that
you have defined all the pins correctly, click the Next>> button to be taken to the “Page Register Definition”
screen as shown next.

Page Register Definition

Since 16-bit MCUs have an abundant number of address lines, memory paging is rarely needed for these
MCUs. However, the PSD page register bits can be used for logic as well. You will learn how to do this in
the second design example.

‘ﬁ 11/49

AN1356 - APPLICATION NOTE

Figure 9. Page Register Definition

pare:
park:
parh:
pard:
par3:
pare:
parl:
parll;

— Define uze of page reqister bits
Page Reg Bit

Define how individual PSD page register bits will be uzed.
E ach bit added for ‘paging’ can double the MCLU address range. Start with pgr(l
E ach bit added for ‘logic’ can be used as logic input to the PLDs. Start with por?.

= Design Assistant

Page Register Definitian | Chip Select Equations | IO Logic Equations | 1

Type of Uze
I paging [logic
I paging [logic
[paging [logic
™ paging [logic
[paging [logic
[paging I logic
I~ paging [logic
[paging [logic

Mame of Logic Signal

— Description

Select this bit for memory paging. Uze one bit to define two memory
pages, uge two bits ta define four pages. three bits for eight pages and
20 oh. Select enough bits to cover the number required pages. Always

'y

-

CHlest>s] Resetal

Wigw

Done |

Cancel |

For this simple design, click Next >> or click on the “Chip Select Equations” tab.

Chip Select Equations (system memory map)
Now that the PSD pins are defined, you will need to define the system memory map. This is accomplished

by defining all the chip-selects in the system (both internal to the PSD and external chip-selects).

The three memories inside the PSD are individually selected segment-by-segment when MCU addresses
are presented to the Decode PLD (DPLD). Each internal PSD memory segment has its own individual
chip-select name. For example, the main PSD Flash memory has eight individual chip-selects (one for
each sector) named fsO — fs7. See the PSD4235G2 data sheet for details. Each PSD memory segment
must be defined in PSDsoft Express if it is to be accessed by the MCU.

We must define the internal PSD memory segment chip-selects: fsO to fs7, csboot0 to csboot3, rs0, and
csiop to match the memory map of Figure 5. The external chip-select for the LCD module, Icd_e, must

also be defined, as shown in Figure 5.

Your screen should look like the following:

12/49

J

AN1356 - APPLICATION NOTE

Figure 10. Chip Select Equations

Page Feqister Definition Chip Select Equations | |0 Logic Equations | User-defined Node Equations |
Far each chip zelect, select a page nurmber if mermomn paging iz uzed, the active address range, and any Diouble click any of the signal names
additional signal qualifiers. Ensure PSD page register bits have been defined if used here. below to append the s_ignal name to
Signal qualifiers are listed in box on right. Logically AMD qualifiers within same line using &' spmbol. Create tbh; tvi%rcealtﬁeNEu;Lrs:ET:EI:StZSImEIS
logic: OR by uzing nest line below. Use 1" symbol for lagical MOT. .
Fain PSD flash memory will regide in this zpace at power-up: [ata Space Only
Secondary PSD flazh memony will reside in thiz space at power-up; Program Space Only
List of chip selects — Enter systam memary information r— Eligible signals
_ FPage Hex Start Hex End Logical AMND of Signal Qualifiers — _psen =
Csiop MHumber Address Address [more than one OK) —d I—
f=0 = _reset
b1 rj g [8000 g [SFFF | Zwith
fs2 _ _ _wil
fs3 Logical OR with next statement: al
fsd I_—'I al
fsh — & 2) all
fsf =it ! ! Al
fs7 Logical OR with nest statement: al2
czboot(] al3 |
cshoot] = ald
csboot2 I__I & I & I & I || |21
csboot3 ~Rresultant i — alk
led e ezultant equation 217
M nkemal chip select for 3K bute SRAM ;l ald
/¢ [1FFF hex locations, max) ald
150 = [[address »= "h3000) & [address <= “hIFFF)); vl a2
a3 =
] I I ﬂ 4 F A _I
< Prew Mest > Reset All | Wiew | Dione | Cancel | Show Eg |

Start with the internal chip-select for the PSD SRAM, which is “rs0”. Looking at the memory map of Figure
5, we see that 8 Kbytes (4 Kwords) of address space needs to be allocated to the PSD’s internal SRAM.
So, we enter the Start Address of 8000h and the End Address of 9FFFh as shown above. Notice that you
do not have to qualify the rsO chip-select with any MCU control signals (_rd, _wrh, _wrl, _psen, etc)
because that is taken care of in silicon, just type in the addresses. This is true for all chip-selects of internal
PSD memory — no MCU control signal qualifiers are necessary. Also notice that the ‘Page Number’
selection is grayed out since we defined no page register bits in the previous screen.

Next, define the chip-select for the internal PSD control registers by clicking on “csiop” on the left side of
the screen. Enter its address range as shown:

Figure 11. CSIOP Address Range

Lizt of chip selects — Enter zpztem memaory infarmation _I
r= Fage Hes Start Hex End Logical ARMD of Signal Qualifiers
MHurnber Address Addresz [rmiore thah one OF)
fz =
o1 rEI g 000 g [Ty
(3]

Continue to define internal PSD memory chip-selects for the main Flash memory segments fs0 to fs7, and
then secondary Flash memory segments csboot0 to csboot3. Use Figure 5 as a guide for address ranges.

573 13/49

AN1356 - APPLICATION NOTE

Again, no signal qualifiers are needed for internal PSD memory chip-selects. Here are a few examples of
what the screen should like for these chip-selects:

Figure 12. FSO Address Range

Lizt of chip zelectz — Enter zpztem memary infarmation _I
1= Page Hex Start Hex End Logical ARMD of Signal Qualifiers
caio Humber Addrezz Addreszs [miore thah one OF)

o rﬂ g [B0000 g [OFFFF g

Figure 13. FS1 Address Range

Lizt af chip selectz — Enter syztern memaony infarmation

Fage Hex Start Hex End Logical AMD of Signal Qualifiers ;I
M urmber Address Addrezs [rmaore than one OF)

rﬂ g [10000 o, [IFFFF

Figure 14. FS7 Address Range

Lizt of chip selects — Enter zpstern memony information

rzl Page Hex Start Hex End Logical AMD of Signal Qualifiers ;I
CEiop Murnber Address Addrezs [more than one OF)
= [= [foomo oy [rreFF g |
If‘ig Logical OR with next statement:
fzd
55 =11 | : |
w Logical OF with nest ztatement:

Figure 15. CSBOOTO Address Range

Lizt of chip zelects — Enter zpztem memary information _I
1=l Fage Hex Start Hex End Logical AMD of Signal Qualifiers
ciop M urnber Address Address [more than one OF]
f=0 =
fs1 [He s [FFF g |
fs2
f=3 Logical OF with nest ztatement:
fa4
= =Y Y B
g
fs7 Logical OF with nest ztatement:

cshoottl S

J

14/49

AN1356 - APPLICATION NOTE

Figure 16. CSBOOT7 Address Range

Lizt of chip selects — Enter syztem memony infarmation _I
1= Fage Hex Start Hex End Logical AMD of Signal Qualifiers
Ciop Murnber Address Address [mare than one OF]
f=0 =
e I_EI g [B000 g [TFEE g
fa2
7% Logical OR with next statement:
fz4
=
e = RS Y
fs7 Logical OF with nest statement;
czhootd
czhoat] =
| csboot2 I_;l b I b I & I I

Finally, define the external chip-select for the LCD module, “lcd_e”". This chip-select is different for two
reasons. First, it is an external chip-select that does not activate any memory element inside the PSD
because the signal “lcd_e” is output on a PSD 1I/O pin. And second, this chip-select requires qualifiers,
meaning that this logic signal is true only for a given MCU address range AND only when one of two other
another signals are active.

In this design, “lcd_e” is true only when the MCU presents an address in the range of 06000 to 06001h
AND when either the P51XA control signal “_wrl” is true, OR when P51XA signal “_wrh” is true. To create
this logic, enter information as shown in the screen below. Since both signals, “_wrl” and “_wrh”, are active
low as they leave the P51XA, the logical NOT operator (!) is used when they are specified as qualifiers.

Signal qualifiers may be added by parking the cursor where you want the signal name to go then just
double-click on the signal name in the list of ‘Eligible signals’.

Figure 17. Signal Qualifiers

Lizt of chip selects — Enter system memony information

r=l] Page Hex Start Hex End Logical AMD of Signal Qualifiers j
cxiop Mumber Address Address [mare than one OF)]

f=(=

e I_EI o G CTR R (7

fa2

f=3 Logical OF with next statement:

fzd

fs5 —, [ooo o Jeomt g [lwh

=

fs? Logical OF with nest statement:

czboot(l

csbioot] =

csbioot2 I_;l B I & I & I T
m |—Flesultant equation |

You can click the View button at any time to see a summary. Once you are satisfied with the results, click
the Next >> button.

‘ﬁ 15/49

AN1356 - APPLICATION NOTE

I/O Logic Equations

Now define the two combinatorial output signals “lcd_rw” and “lcd_a0”. You should see the following
screen:

Figure 18. 1/0 Logic Equations

Page Register Definition | Chip Select Equations 0 Logic Equations | User-defined Nade Equations |
Select signalz in the 'List of gignalz’ box and define the equation by either typing in ‘logic Diouble click logic operatorz or signals
equation’ bax ar double clicking the “alid operatars’. and ‘Eligible signals’ box. below to append text inside the logic
equation bos where the curgor iz located.
List of zignals
— Enter logic equation —alid operators
led_new Output enable N Logical operators: -
le:d_a0 [ind [1 Mot [Complement o Invert]
led_al Output enable L
OR
¥ =OR
k3 #MOR -
i _>I_I
]
— Rezultant equation
led_mw = Gnd;
pdr?
—lj 1d_bey j
Yoo -
el o ’
<< Prev Mewt »> Fieset All | Wiew | Done Cancel | Show Eq |

The signal “Icd_rw” should be a constant 0 volt output, so highlight the signal “lcd_rw” in the ‘List of signals’
box on the left. Then park your cursor in the ‘Enter logic equation’ box at the upper left corner. Now scroll
down in the ‘Eligible signals’ box until you find the signal “Gnd”. Double-click on “Gnd” and it will appear
in the logic equation box as shown above. This is how you create equations for each of the 1/O signals.
You can also type the equations into the box.

Now set the output enable term for the signal “lcd_rw” to always active, or “Vcc” as shown:

Figure 19. LCD_RW Equation

Lizt of gignals

lzd e Enter logic equation
ded 1w Cutout enable
led_al Vo N
lzd_al Output enable

Next, define the signal “lcd_a0” as shown below:

J

16/49

AN1356 - APPLICATION NOTE

Figure 20. LCD_AO0 Equation

Lizt of gignals

led_nw Enter logic: equation
led e Output enable o ;I

led_al Qutput enable

To do this, park your cursor in the ‘Enter logic equation’ box, then go to the ‘Valid operators’ box, and
double-click on the “I” symbol. Now go to the ‘Eligible signals’ box and double-click on “_wrh”. Lastly, set
the output enable term for “lcd_a0” to “Vcc” just like “lcd_rw”.
As an example of more complex logic, you can implement longer equations by adding signals and
operators as shown in the following generic logic statement:

Figure 21. Generic Logic Statement

Lizt af =signalz

Enter logic equation

[input_g & linput_C] 8 [input_B & output_&]

output_B Output enable
oLtpLt_g,
output_&, Output enable

Notice that you can include other output signals (feedback) as part of the equation.

There are no ‘User-Defined Nodes’ in this simple design example, so click Done. This starts a preliminary
resource and system check of the information you have entered. Analysis is performed to check for
overlapping memory segments, problems with synthesizing the logic, and other problems. Any errors
encountered will be indicated. An ABEL HDL file is generated.

Design Flow

Once you have clicked on Done, you are taken to the ‘Design Flow’ window. Use this window as your main
navigational tool for PSDsoft Express™. Clicking on individual boxes within the flow diagram will invoke a
process. A box shadowed in red identifies the next process that needs to be completed. The first three
steps have been completed to this point. If you invoke a process that invalidates other processes
downstream, the gray boxes indicate which processes must be invoked again and the red shadow
indicates which process to invoke first.

The design flow should be in the following state:

J

17/49

AN1356 - APPLICATION NOTE

Figure 22. Design Flow

Specify
Project

:

Define PSD
and MCL

:

Define PSD
Pin [Mode Functions

:

Design Flow

Adddtions!
P=D Settings = Mext Action

l MCL Firrnware

Fit Design to Genergte © Code
Silican Specific to PED

Merge hCL & Exlitar, Compiler, Your Application
. . -
Firmesvare with PSD Linker, Debugger C Code or Sazembly

Device Programming

Additional PSD Settings

Click the ‘Additional PSD Settings’ box. This is where you may choose to set the security bit to prevent a
device programmer from examining or copying the contents of the PSD. You can also click through the
other sheets on this screen to set the JTAG IEEE 1149.1 USERCODE value and set sector protection on
individual PSD non-volatile memory segments as desired.

Fit Design to Silicon

Click the ‘Fit Design to Silicon’ box. PSDsoft Express will input the generated ABEL file and all other
configuration settings to synthesize the logic, creating reduced logic equations and a fusemap that fits the
PSD4235G2 silicon elements. When this process is complete, a report will pop up that shows the resulting
pin assignments and the resulting reduced equations. This is the “fitter report”, which you can use to
document your design.

PSD-Specific C Code Generation

You can take advantage of the provided low-level C code drivers for accessing memory elements within
the PSD by clicking on the ‘Generate C Code Specific to PSD’ box in the design flow window. ANSI C code
functions and headers are generated for you to paste into your C compiler environment. Simply tailor the
code to meet your system needs and compile. C code generation can be performed anytime after a project
is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the header files
and the C source file to be written, and name the C source file. Select the categories of functions that you
would like to include, then click Generate. Three files will be written to your specified folder(s):

18/29 573

AN1356 - APPLICATION NOTE

m <your_specified_name>.c — ANSI-C source for all of the selected functions
m psd4235g2.h—ANSI-C — header file to define PSD registers
» map4235g2.h—ANSI-C — header file to define locations of system memory elements.

Notice that you do not have a choice to rename the two generated header files. This is because those
header files are specified by name within the generated C function source file. If you edit the names of the
generated header files, be sure to edit the generated C function source file to match the new header file
names.

The three generated files may now be tailored and integrated into your compiler environment. The file
psd4235g2.h contains a #define statement for each individual C function within the
<your_specified_name>.c file. Edit psd4235g2.h and simply remove the comment delimiters (//) from the
#define statement for each generated C function that you would like to be compiled with the rest of your
C source code.

There are also coded examples available. Click on the ‘Coded Examples’ tab at the top of the C Code
Generation screen. This sheet contains several examples that you may use as a basis for building your
own C code application. These are complete projects (main, functions, and headers) targeted toward
various MCUs. You may copy these files to some folder to browse them for ideas, or cut and paste
sections from the examples into your own MCU cross-compiler environment.

Merge MCU Firmware with PSD

Now that all PSD pins and internal configuration settings have been defined, compiled, and fitted, PSDsoft
Express™ will create a single object file (.obj) that is a composite of your MCU firmware and the PSD
configuration. FlashLINK™, PSDpro, and third party programmers can use this object file to program a
PSD device. PSDsoft Express will create a file called “simpleXA.obj” for this first design example.

During this merging process, PSDsoft Express will input firmware files from your MCU compiler/linker in
S-record or Intel hexadecimal format. It will map the content of these files into the physical memory
segments of the PSD according to the choices you made in the “Chip Select Equations” screen. This
mapping process translates the absolute system addresses inside specified firmware files into physical
internal PSD addresses that are used by a programmer to program the PSD. This address translation
process is transparent. All you need to do is type (or browse) the file names that were generated from your
MCU linker into the appropriate boxes and PSDsoft Express does the rest. You can specify a single file
name for more than one PSD chip-select, or a different file name for each PSD chip-select. It depends on
how your MCU linker has created your firmware file(s). For each PSD chip-select in which you have
specified a firmware file name, PSDsoft Express will extract firmware from that file only between the
specified start and stop addresses, and ignore firmware outside of the start and stop addresses.

Click on “Merge MCU Firmware” in the main flow diagram and you will see the following:

J

19/49

AN1356 - APPLICATION NOTE

Figure 23. Merge MCU Firmware

Merging of MCU Firmware with P5D

~Step 1: MCU firmware placement
Specify name of MCL firmware file for each PSD memary segment below. Scroll to see all segments.

You may heed to edit/add the start and stop addresses if paging or other memary manipulation is More Info... |
uzed.

temony : File File

Select Memary Select Equations | Address Address File Mame

Mame Start [hex] | Stop [hex)

lpdn & a19 & 1a18 & a1 7 &

Fs0 la1E; Im IEFFFF I Browse. .

Ipdn & 1213 & 118 & 1217 &
F51 alk; [1ooo0 eFrE Browse.

Ipdn & 1a19 & lal8 & a17 &
F52 a1 |2uuuu |2FFFF | Browse...

lpdn & 1219 & 1518 & a1 7 &

L

Fs3 |alk |3auau |3FFFF | Browse. .
Record Type tapping Mode
& Intel Hex Record " Motorola 5-Record &' Direct " Relative

~ Step 2: Merge PSD configuration and MCU firmware

Click 0K ta create a programming data file.

LCancel

HE

In the left column are individual PSD memory segment chip-selects (FSO0, FS1, and so on). The next
column shows the logic equations for selection of each internal PSD memory segment. These equations
reflect the choices that you made while defining PSD internal chip-select equations in an earlier step. In
the middle of the screen are hexadecimal start and stop addresses that PSDsoft Express has filled in for
you based on your chip-select equations. On the right are fields to enter (browse) the MCU firmware files.

Select ‘Intel Hex Record’ for ‘Record Type’ as shown. Select ‘Direct’ for ‘Mapping Mode’. This maps the
MCU addresses residing inside the Hex file directly to the corresponding addresses within the range of
the file start and stop addresses that are typed into the boxes. ‘Direct’ is the most typical setting. ‘Relative’
mode will place contents of the specified Hex file starting at the beginning of a physical PSD memory
segment, in other words, no offset from the base of the physical memory segment. ‘Relative’ is used only
for very unique applications.

Scroll all the way down to the bottom to get to the secondary Flash memory. Now, click Browse... for
csboot0 and select the firmware file, PSDexpress\examples\boot_32K.hex. Repeat for csbootl, csboot2,
and csboot3 specifying this same file name for each. Once you have filled in the file names, your screen
should look like the one below:

J

20/49

AN1356 - APPLICATION NOTE

Figure 24. Scroll to the Bottom to get to the Secondary Flash Memory

Merging of MCU Firmware with P5SD E3

—Step 1: MCU firmware placement

Specify name of MCL firmware file for each PSD memory segment below, Scroll to see all segments.,
You may need to edit/add the start and stop addresses if paging or ether memony manipulation is Mare Infa... |

used.

temmany ¥ S oot E : File: File

Select emory select Equations Address Address File Mame

MHame Start (hex] | Stop [hex) Eg{g:‘r:ci;heet
Ipdn & lal13 & [a18 & 1a17 |L to the secgndary

CSEOOTO | g 12168 1215 % 1214 & ||:| I‘IFFF IE:'\F‘sdsoft'\EKAMF‘LES\ Browse... |
lal3: Flash Memory
Ipdi & 1a19 & 1a18 & 1317 &

CSBOOTT (1416 & la15 % la14 & a13; |2DDEI |3FFF IE:\Psdsoft\EX&MF‘LES\ Browse... | /
Ipdn & lal19 & la18 & 1217 &

CSBOOTZ | 1416 & 1a15 & a4 & lal3; |4UDD IEFFF IE:'\PSdsoft'\EX-’-\MF'LES\ Browse... |
lpdn & 119 & 1218 & lal7 &

CSEONT3 |'alb&lalbd ald &al3: |snuu I?‘FFF IE:\PSdSth\EXﬁMF‘LES\ Browse... |{)

Record Type Mapping Mode
¢ |ntel Hex Record " Motorola 5-Record = Direct ' Relative

—Step 2: Merge PSD configuration and MCU firmware
Click 0K to create a programming data file.] 4

Cancel

This specification places firmware in PSD secondary Flash memory segments csbootO through csboot3.
PSDsoft Express will extract any firmware that lies inside the file boot_32K.hex between MCU addresses
0000 and 7FFF and place it in appropriate PSD memory segment. Click OK to generate the composite
object file, simpleXA.ob;.

Note: the file boot_32K.hex does not contain P51XA firmware. It is used to illustrate the firmware merging
process. Boot_32K.hex has a data pattern for each of the four segments of secondary PSD Flash memory.
CsbootO will receive AAh, csbootl receives BBh, csboot2 receives CCh, and csboot3 receives DDh. The
point is that although only one file name was specified for four different PSD memory segments, PSDsoft
Express extracted the proper data for each segment based on the specified file start and stop addresses
and the addresses contained inside the file boot_32K.hex. You may examine the contents of the file
boot_32K.hex if you wish to better understand.

Programming the PSD

The file simpleXA.obj can be programmed into the PSD by one of three ways:
m The ST FlashLINK™ JTAG cable, which connects to the PC parallel port.

m The ST PSDpro device programmer, which also uses the PC parallel port.

= Third-party programmers, from Stag, BP Micro, and others. See our website at www.st.com for list (PSD
Products, Programming, then Programmers).

J

21/49

AN1356 - APPLICATION NOTE

Programming with FlashLINK™

Connect the FlashLINK™ JTAG-ISP cable to your PC parallel port. Click the ‘JTAG-ISP’ box in the design
flow window. You will be asked how many devices are in your JTAG chain. For this example, select ‘Only
One’. You would only select ‘More than One’ if you had more than one ISP device in your JTAG chain
(even non-ST JTAG devices may be included in the chain). You may choose to disable this question that
appears each time you enter the JTAG screen, and then turn it back on later using the ‘Preferences’ menu
choice from the ‘Project’ pull-down menu. Click OK after your selection, you should see the following
screen:

Figure 25. JTAG Chain Setup Window

JTAG-ISP Operationz - Single Device E4

—Step 1: Select Programming file and PSD

Select folder and programming file: Select device:

IE:‘\F'3u:Isu:uft'\my_pruiect\simplexa.u:ul:ui Browse. .. | IPSD4235I32 j

—Step 2: Specify JTAG-ISP operation and conditions

Select operation: Select PSD region: Select # of JTAG pins to uze on circuit board: Other conditions:
IF'mgram j I.-'-‘-.II j IE ping - tdibdokek s tstat,_ter j F'rl:uperties___l

Click here to perform specified JTAG-ISP operation »»> Execute

— Step 3: Save or retrieve JTAG-ISP setup

Specify folder and filename to save the setup of this JTAG-SP session or retlieve a previous session. S ave

il i

Select falder and file: || Browse. ..

[™ Log Mode - Click box bo record session infomation in the log file * pl.

=

[

Huw Setup Fezet Target | Cloze |

This window enables you to perform JTAG-ISP operations and also offers a loop back test for your
FlashLINK ™ cable. If this is your first use, test your FlashLINK™ cable and PC parallel port by clicking the
HW Setup button, then click LoopTest button and follow the directions.

Now let’s define our JTAG-ISP environment. PSDsoft Express should have filled in the folder and filename
of the object file to program, the PSD device, and the JTAG-ISP operation, as shown in the screen above
in ‘Step 1'. For this design example, we have chosen to use all six JTAG-ISP pins (instead of four) so six
pins is automatically filled in. Using all six pins reduces programming time by 10%-15%. Refer to
Application Note 54 for details.

To begin programming, connect the JTAG cable to the target system, power-up the target system, and
click Execute on the JTAG screen in ‘Step 2. The Log window at the bottom of the JTAG screen shows
the progress. You can choose to save all log messages to a file by clicking the ‘Log Mode’ box.

There are optional choices available when the Properties... button is clicked. One choice includes setting
the state of all non-JTAG PSD I/O pins during JTAG-ISP operations (make them inputs or outputs). The
default state of all non-JTAG PSD 1I/O pins is “input”, which is fine for this design example. The other

22/49 ﬁ

AN1356 - APPLICATION NOTE

choice allows you to specify an IEEE 1149.1 USERCODE value to compare before any JTAG-ISP
operation starts. This is typically used in a manufacturing environment. See the on-screen description for
details.

After JTAG-ISP operations have completed, you can save the JTAG setup for this programming session
to a file for later use. To do so, click on the Save button in ‘Step 3'. To restore the setup of a previous
session, click the Browse... button in ‘Step 3.

Programming with PSDpro

Connect the PSDpro device programmer to your PC parallel port per the installation instructions. Click on
the ‘Conventional Programmers’ box in the design flow window. You will see this:

Figure 26. Parallel Programming Window

Convenliunal Programming : simplexa.obj - PSDpro

2|Q 20wl [0 2] 5w 5w | [« [=]]
PSDA4235GZ2 | Displayed region: Main Flash [00000 - 7FFFF] | FS0: 00000 simplexa.obj
Direct Address Hexadecimal display of programming data file ASCIl Bepresentation

00000 [FA[FF[FF[FF[FF[FF[FF[FF[FFJFF[FF [FF [FF [FF [FF [FF |2] o
00010 [FF[FF[FF[FF[FF[FF[FF[FF[FF[FF[FF[FF[FF[FF[FF[FF] o
00020 [FF[FF[FF[FFJFF[FF[FF[FF[FFJFF[FF[FF[FF[FF[FF[FF | | - o
00030 [FF[FF[FF[FFJFF[FF[FF[FF[FFJFF[FF[FF[FF[FFJFE[PF | | o
00040 [Fr[FF[FF[FFJFF[FF[FF[FF[FFJFF[FF[FF[FF[FFJFEJFF | | oo
00050 [Fr[FF[FF[FFJFF[FF[FF[FF[FFJFF[FF[FF[FF[FFJFFJFF | | - oo
00060 [FF[FF[FF[FFJFF[FF[FF[FF[FFJFF[FF[FF[FF[FFJFFJFF | | - oo
00070 [rr[FF[FF[FFJFF[FF[FF[FF[FFJFF[FF[FF[FF[FFJFFJFF | | oo
00080 [FF[FF[FF[FFJFF[FF[FF[FF[FF[FF[FF[FF[FF[FFJFFJFF | | - oo
00090 [FF[FF[FF[FF[FF[FF[FF[FF[FFJFF[FF[FF[FF[FF[FF[FF | | o
0000 [FF[FF[FF[FF[FF[FF[FF[FF[FFJFF[FF[FF[FF[FF[FF[FF | o

If this is the first use of the PSDpro, you'll need to designate the PSDpro as the device connected to your
parallel port. To do this, click the SET H icon button at the top of the “Conventional Programming” screen
and choose the PSDpro. Then click on the H TEST icon to perform a test of the PSDpro and the PC
parallel port. After testing, place a PSD4235G2 into the socket of the PSDpro and click on the Program
icon. (The simpleXA.obj file is automatically loaded when this process is invoked.) The messaging of
PSDsoft will inform you when programming is complete.

This window is also helpful even if you do not have a PSDpro device programmer. Use this window to see
where the ‘Merge MCU Firmware’ utility has placed MCU firmware within physical memory of the PSD.
For this design example, click on the secondary PSD Flash memory icon “Fb” in the tool bar. You can see
the AAh pattern in csbootO from the file boot_32K.hex. Scroll down to the beginning of csbootl (address
82000) and see the BBh pattern, and so on. This is useful when you want to examine your own firmware.
To see how all of the MCU absolute addresses translated into direct physical PSD memory addresses,
view the report that PSDsoft generates under “Reports” from the main toolbar, then select “Address
Translation Report.” Within the report, the Start and Stop addresses are the absolute MCU system
addresses that you have specified. The addresses shown in square brackets in the reportare the direct
physical addresses used by a device programmer to access the memory elements of the PSD in a linear
fashion (a special device programming mode that the MCU cannot access).

‘ﬁ 23/49

AN1356 - APPLICATION NOTE

SECOND DESIGN EXAMPLE - ISP, FULL IAP & CPLD LOGIC ELEMENTS

This second design example builds upon the first by adding true IAP capability. You will see how to
execute from secondary PSD Flash memory in program space while programming the main PSD Flash
memory in data space, then move main PSD Flash memory to program space for execution. We will also
create some complex logic in the CPLD requiring use of the Extended Design Assistant.

Memory Map
Figure 27 and Figure 28 represent the system memory maps for this design.

Figure 27 represents the system memory map at power-up and after reset. This map is also valid during
IAP. Notice that all of the main PSD Flash memory is initially in Data space so that the P51XA can write
to it during IAP. Also notice that all of the secondary PSD Flash memory is initially in Program space so
the P51XA can execute code from it during IAP. The choice for this initial placement of memory in Program
or Data space was made within PSDsoft Express (‘Define MCU and PSD’ in flow diagram).

Figure 28 represents the system memory map after IAP is complete. All of main PSD Flash memory has
moved to Program space. The PSD has a control register (hamed the VM register) that allows the P51 XA
to change the definition of Program space and Data space at run-time for IAP purposes. This VM register
is accessed at an address offset from the base address, “csiop”.

Sequence of events for IAP:
m Figure 27 - at power on or after reset, the P51XA boots from secondary PSD Flash memory
m Figure 27 — P51XA runs a checksum of the main PSD Flash memory in Data space

m Figure 27 - If needed, P51XA programs and verifies main PSD Flash memory in Data space via the
UART

m Figure 27 — P51XA writes 06h to the VM register to place main PSD Flash memory into Program space
m Figure 28 — main Flash memory has moved to program space as a result of writing 06h to VM register

= Figure 28 — P51XA can now execute application code from either main or secondary PSD Flash
memory

To accomplish this IAP function, no chip-select equations have to change from the first simple design
example. Only the VM register must be accessed at run time as described above.

For MCUs/MPUs without Harvard architecture (Harvard: separate program and data address spaces) the
VM register is not needed since there is only one address space for both code and data. IAP is much
simpler for these MCUs/MPUSs.

J

24/49

AN1356 - APPLICATION NOTE

Figure 27. Memory Map at Boot-Up or Reset and During IAP

P51XA P51XA
Program Space Data Space
8FFFFh fs0 8FFFFh
64K bytes PSD 64K bytes
Main Flash 80000h
fs7 7FFFFh
64K bytes PSD 64K bytes
Main Flash 70000h
fs6 6FFFFh
64K bytes PSD 64K bytes
Main Flash 60000h
fs5 5FFFFh
64K bytes PSD 64K bytes
Main Flash 50000h
54 4FFFFh
64K bytes PSD 64K bytes
Main Flash 40000h
nothing mapped fs3 3FFFFh
64K bytes PSD 64K bytes
Main Flash 30000h
fs2 2FFFFh
64K bytes PSD 64K bytes
Main Flash 20000h
fsl 1FFFFh
64K bytes PSD 64K bytes
Main Flash 10000h
OFFFFh
nothing mapped
0A000h
08000h rs0, 8k bytes PSD SRAM 08000h - 09FFFh 64K b
06000h - 07FFFh | cshoot3, 8Kb PSD 2nd Flash csiop, PSD cnti regs 07000h - 070FFh yies
(Note 2)J 94000n - 05FFFh | csboot2, 8Kb PSD 2nd Flash lcd_e, ext LCD chip sel 06000h - 06001h
02000h - 03FFFh | csbootl, 8Kb PSD 2nd Flash nothing mapped 00400h - O5FFFh
00000h - 01FFFh | cshoot0, 8Kb PSD 2nd Flash P51XA-G3 Regs/SRAM 00000h - 003FFh
Al04081
Note: 1. PSD VM register initially 12h, Main PSD Flash memory in Data space.
2. IAP loader code gets programmed here by JTAG-ISP or conventional programmer tool.
1S7i 25/49

AN1356 - APPLICATION NOTE

Figure 28. Memory Map just after P51XA writes 06h to PSD VM register

P51XA P51XA
Program Space Data Space
8FFFFh fsO 8FFFFh
64K bytes 64K bytes PSD
80000h Main Flash
7FFFFh fs7
64K bytes 64K bytes PSD
70000h Main Flash
6FFFFh fs6
64K bytes 64K bytes PSD
60000h Main Flash
5FFFFh fs5
64K bytes 64K bytes PSD
50000h Main Flash .
AFEEFh tsd nothing mapped
64K bytes 64K bytes PSD
40000h Main Flash
3FFFFh fs3
64K bytes 64K bytes PSD
30000h Main Flash
2FFFFh fs2
64K bytes 64K bytes PSD
20000h Main Flash
1FFFFh fs1
64K bytes 64K bytes PSD
10000h Main Flash
OFFFFh
nothing mapped 0A000h
64K b 08000h rs0, 8k bytes PSD SRAM 08000h - 09FFFh
YteS < 06000h - 07FFFh | cshoot3, 8Kb PSD 2nd Flash csiop, PSD cnti regs 07000h - 070FFh
04000h - O5FFFh | cshoot2, 8Kb PSD 2nd Flash lcd_e, ext LCD chip sel 06000h - 06001h
02000h - 03FFFh | csbootl, 8Kb PSD 2nd Flash nothing mapped 00400h - 05FFFh
00000h - 01FFFh | csboot0, 8Kb PSD 2nd Flash P51XA-G3 Regs/SRAM 00000h - 003FFh
Al04082

Note: 1. IAP complete, main PSD Flash memory moves to Program space

Your system design may require that you operate application code completely from main PSD Flash
memory after IAP is complete. This means swapping the secondary PSD Flash memory (containing IAP
loader code) out of Program space, and replacing it with main PSD Flash memory (containing application
code). This is explained in the third design example.

PSDsoft Express Design Entry

We are finished with IAP issues, now let’s get started on the advanced CPLD logic design. Invoke PSDsoft
Express, open the project “simpleXA” from the first design example (if not already open). Pull down
‘Project’ from the menu at the top of the screen, and select ‘Save As’. For this second design example,
save the first project under the new name “logicXA”.

For this second design, “logicXA” we want to use the Extended Design Assistant environment so go to the

‘Project’ menu pull down at the top of the screen and select ‘Preference’. Then enable ABEL editing by
clicking the box as shown, then OK.

573

26/49

AN1356 - APPLICATION NOTE

Figure 29. Design Assistant Selection

Preference E

¥ Enable HDL Azsistant

¥ Enable ABEL-HDL meszages to log file

¥ Enable ABEL equations editing capability

¥ Enable Single/tulti device JTAG/ASP chain meszage

Cancel |

You should see the full flow diagram as shown below. This flow also appears if ‘Extended Design
Assistant’ is chosen for a new design. Note that the ability to edit the ABEL file is not available for
PSD9XXF or PSD4135G devices, both of which have simple PLDs (no registers).

Figure 30. Design Flow

/

Additional box

Design Flow

Specify
Project

Define PSD
ancl MU

Define PSD
Pin § Mode Functions

Edit f Add Logic
Statements

Additional
PED Settings

Fit Design to
Silicon

|

Merge MCL
Firmyyare with PSD

Generate © Code
Specific to PSD

Editar, Compiler,
Linker, Debugger

Your Application
C Code or Azsembly

J

27/49

AN1356 - APPLICATION NOTE

For this second design example, we’ll implement the following logic elements to illustrate PSD
functionality:

m 4-state state machine with comparator feature.

m Eight debounced inputs used for state machine input.

m 4-bit reloadable down-counter with initial value set by the MCU.
= Simple clock divider circuit.

= 20 general purpose I/O pins controlled by MCU firmware.

m PSD page register.

= Miscellaneous combinatorial logic.

The general tactic is to use the Graphic User Interface (GUI) of the Designs Assistant as much as possible
to create these logic functions before we have to manually edit the generated ABEL HDL file. You will see
that the GUI creates all of the necessary pin and signal declaration statements as well as some of the
simple logic equations. After this point, we will open the ABEL file and add more ABEL statements to
implement the state machine and down-counter.

Pin Definitions

To achieve this, let's go back and define the remaining pin functions from the schematic of Figure 4. Click
on the ‘Define PSD Pin/Node Function’ box and add the following signals:

» Define eight inputs on Port A that are clocked (sampled) as they enter the PSD. Choose Product Term
(PT) clocked register from the CPLD Input section, and name them “strobed_in_0" through
“strobed_in_7". In silicon, these are IMCs.

m Define a combinatorial CPLD output on Port B pin pb5. Choose Combinatorial from the CPLD Output
section and name it “zero”. Click Add.

m Define a logic input to the CPLD on Port B pin pb6. Choose Logic or address from the CPLD Input
section name it “sys_ready”. Click Add.

m Define a combinatorial CPLD output on Port B pin pb7. Choose Combinatorial from the CPLD Output
section and name it “sequence_OK”". Click Add.

n Define eight MCU general purpose 1/O signals on Port C. The MCU can set these pins to logic high or
low as outputs, or read the pins as inputs all through firmware at runtime. To set this up, choose MCUI/
O Mode from the Other section and name them “mcuio_pc0” through “mcuio_pc7”.

n Define four MCU general purpose I/O signals on Port F. Choose MCUI/O Mode from the Other section
and name them “mcuio_pf4” through “mcuio_pf7”.

» Define eight MCU general purpose I/O signals on Port G. Choose MCUI/O Mode from the Other section
and name them “mcuio_pg0” through “mcuio_pg7”.

m Define a common PSD clock signal input on Port D pin pd1l. Choose Common clock input, CLKIN in
the Other section.

Your screen should look like this:

J

28/49

AN1356 - APPLICATION NOTE

Figure 31. Pin Definition Screen

Pin Definitions

Define each pin by repesating the following steps:
(standard pins already defined)

— Step 1: Select a pin on the chip diagram below. —

ad

ah

ab

ars

ad

ad

all

all

ald

al3

ald

alh

alb

al?

alg

ald

it

_psen

_rd

_reset

strobed_in_0

strobed_in_1

strobed_in_2

strobed_in_3

strobed_in_4

strobed_in_&

strobed_in_E

strobed_in_7

lcd_e

lod_rw

Icd_al

Zerg

sys_read

sequence_ok

el ie el e R e e e e e e e e e e O e e D S T S B e T B B e Dy R

adiol
adiol
adio?
adiol
adiod
adioh
adiob
adio?
adicd
adiod
adicll
adioll
adiol2
adicl3
adiol4
adicls
chtld
cntl2
chtll

_reset

pal
pal
paz
pad
pad
pab
pak
pas
falali]
ph
phi
jalaX]
phd
a1
phb
ph?

peld
pel
pce
ped
ped
pch
peh
pci
pdl
pdl &
pdz ¢
pd3
peld
pel
pes
ped ¢
ped
peh
peb
pei
ptl
pfl
pfz
pf3
pfd @&
pfh
pth
pff
pgl
pgl
pge
po3
pod ©
pgs
pob
pg?

mcuio_pcl

rcuio_pcl

mcuio_pc?

mcuio_pcd

meuio_pcd

mcuio_pch

mcuio_pch

mcuio_pc?

ale

clkin

_wirh

tms

ok

tdli

tdo

tstat

_terr

wath

al

al

az

ad

meuia_pfd

micuio_pfs

meuio_pfe

mcuio_pf?

rcuio_gpgl

meuio_pgl

rmcuio_pgd

rcuio_gg3

mcuio_pgd

rcuio_gpgs

mecuio_pgh

mcuio_pg?

L |

— Step 2: Pin Function —
Define the pin function, then click the
Add/Update button. Return to step 1
repeat for nest pin.

Name:

— Fin Function
— CPLD Input

™ Logicor address

— CPLD Output
= Cambinatorial
= External chip select - Active-Hi
= External chip select - Active-Lo

— Cther
& WMCU /O mode
= WCU D mode with pin enable
" Latched address out

Update | Delete

— Step 3 (Final Step) —

Click Mext»> after all pins are defined.
Click iew at any time to check progress.
Click Dane to save the update and close.

Wi | Next>>| Cancel| Cone |

Click Next>>.

Page Register

This brings you to the PSD page register definition screen. Although we will not need to page memory
since this MCU has plenty of address lines, we will use one of the page register bits for general logic. In
this case, we define one page register bit as logic and name it “begin”. This will be used in our state
machine to allow it to start cycling. Using page register bits saves the use of OMCs.All page register bits
are available as CPLD inputs. Note that the page register bits are cleared upon power-up and subsequent

resets.

Define the “begin” bit as follows, then Click Next >>.

573

29/49

AN1356 - APPLICATION NOTE

Figure 32. Page Register Definition

Define how individual PSD page register bite will be used,
E ach bit added for ‘paging' can double the MCU addrezs range. Start with pgrl.
E ach bit added for 'logic’ can be used az logic input ta the PLD=. Start with par?.

=3 Dezign Assiztant

Fage Register Definitian | Chip Select Equations | !0 Logic Equations

r— Define use of page register bits
Page Reg Bit Type of Use

par?: [paging [logic
par: [paging [logic
poif: " pagng [logic
pard: [paging [logic
pard: [paging ¥ logic
pore: " pagng [logic
parl: [paging [logic
par: [paging [logic

MName of Logic Signal

— Dezcription

Select this bit for memory paging. Use one bit to define bwao memory
pages, uze hwo bits to define four pages, three bits for eight pages and
20 on. Select enough bitz to cover the number required pages. Alwaps

-

[

Reset all Wiew

Done | Caticel |

I/O Logic Equations

There are no changes needed to the memory map (chip-selects) from the first design as all IAP
enhancements can be accomplished by using the VM register in this case. Click Next >> to skip the ‘Chip

Select Equations’ screen. You should see the ‘I/O Logic Equations’ screen as follows:

30/49

J

AN1356 - APPLICATION NOTE

Figure 33. 1/0 Logic Equations

Page Register Definition | Chip Select Equations /O Logic Equations | User-defined Mode Equations |

Select signals in the 'List of signals’ box and define the equation by either tpping in ‘logic
equation’ box or double clicking the “Walid operatore’, and 'Eligible zignals' box.

Double click logic operatars or signals
below to append test inside the logic
equation box where the cursor iz located.

Ligt of zsignalz
3l — Enter logic eguation —alid operators
strobed_in_1 PT clock - Logical operatars: -
[| - qgic:al op

gtrobed_in_2 PT clock lekin J | Mot [Complement ar lrvert)
strobed_in_3 PT clock e AMD
gtrobed_in_4 PT clock # oR
strobed_in_5 PT clock] =0R
gtrobed_in_E PT clock 1% ®MOR
strobed_in_7 PT clock _lLI
led_mw 1 L
led_nw Output enable
led_al R -)
lcd_all Output enable LI » - Eligible signals
zer0 _psen -
zero Output enable ~ Resultant equation _d
sequence_ok - - reset
sequence_ok Output enable strobed_in_0.1d = lclkin; ;I Tyt

il

all

_ILI al
10
e I I ﬂ LI ’ A LI
<< Prew | Mest >3 | Fiaset Al | Yiew | Caricel | Show Eq |

Notice the eight strobed inputs. These are Input Micro-Cells (IMCs), which offer a flip-flop on each of these
input pins. For this example, we will define the clock to strobe these IMCs on the opposite edge of the
state-machine clock. This will guarantee that a stable value is presented to the state-machine. Do this by
parking the cursor in the ‘Enter logic equation’ box, double-click the “!” symbol in the ‘Valid operators’ box,
then double-click “clkin”. It should look like the figure above. Repeat this for all eight inputs.

The signals “lcd_rw” and “lcd_a0” should already be defined from the first design. The logic for the signals
“zero” and “ and “sequence_OK” will be defined when we type in logic while editing the generated ABEL
HDL file, so leave them blank. However, define their output enable signals so they are always on by
assigning “Vcc”. That's all we need to do so click Next >>,

User-defined Node Equations

In this final screen of the Design Assistant, we define internal logic nodes, both combinatorial and
registered. Your screen should look like this:

J

31/49

AN1356 - APPLICATION NOTE

Figure 34. User-defined Node Equations

= Design Assistant

Page Fegister Definitian | Chip Select Equations | I¥0 Logic Equations Userdefined Nade Equations |

Define an internal node. then enter itz logic equation and associated terms [clock., preset. Double click lagic operatars or signals
clear, feedback, ete.] below to append test inzide the logic
equation box where the cursor iz located,

Lizt of signals

— Enter logic equation —Vald operators——————————————————
;I Logical operators: j
[Mot [Complement or [nvert)
A AND
ar
¥ XOR

1% =MOR -
i _'IJ
LI Lrl — Eligible zignals

_psen -
r— Resultant equation _rd
_reset
;I _wirh
_wil
al
= al
S—— | g B -
IMI <4 Prev HesetAIIl Wiew | Done Cancel | 5h0WECI|

Let's establish all of the internal nodes used for this second design. They are:

Two register nodes for a 4-state state-machine — state_bit_0 and state_bit_1

One register node for a simple clock divider — half_clkin

m Four register nodes for a down-counter — down_count0 to down_count3

Four register nodes to pre-load the down-counter — init_countO to init_count3

= One combinatorial node used as an intermediate node for down-counter — term_count

Each internal node, either combinatorial or registered, will consume one Output MicroCell (OMC).

First we'll define two registers to implement a 4-state state machine. Click on Def Node... Enter the name
“state_bit_0" and designate it as a register as shown here:

32/49

J

AN1356 - APPLICATION NOTE

Figure 35. Define Node Window

Uzer-defined Node Ei

Create, update or delete a node definition,

M Istate_bit_[l -

— Internal Maode

= Combinatorial
Add

Delete

[B |
Daone |

Now click Add . Do the same for state_bit_1. You should have the following entries in the ‘List of Signals’
box.

Figure 36. List of Signals

Lizt of zignals

state bit 0 — Enter logic: equation——
gtate_bhit 0 Clock,
state_bit_0 Reszet
gtate_hit_0 Set
state_hit_1
state_bit_1 Clock,
gtate_hit_ 1 FReset
state_bit_1 Set

You can see that for each register node that is included, its input, clock, reset, and preset values are
automatically added to the list. Equations can be specified for all of these elements. Figure 37 illustrates
the relationship between a registered node and its signal names for this example.

J

33/49

AN1356 - APPLICATION NOTE

Figure 37. Internal Register Node and Associated Signal Names

state_bit_0 Set

PRE

v)
o)

state_bit_0

state_bit_0 Clock
CLR

state_bit_0 Reset

Al04083

Continue to add nodes. Enter the following node names and node types, clicking Add after each:

down_countO ... register
down_countl ... register
down_count2 ... register
down_count3 ... register
init_countO ... register
init_countl ... register
init_count?2 ... register
inti_count3 ... register
term_count ... combinatorial

Next we will specify equations for as many of these nodes as we can using the Design Assistant GUI.
Afterwards, we will manually edit the generated ABEL statements to finish the logic.

Let’s start with the state machine nodes. We won’t specify logic for the node inputs using the GUI because
that will be done when the state machine statements are added to the ABEL file. So leave it blank as
shown here (same for state_bit_1):

Figure 38. List of Signals

Lizt of zignalz Leave blank

iztate bit [
state_bit_0 Clock
state_hit_0 Reset
state_hit_0 Set

Enter logic equation

| P

However, let’s assign the clock for each state machine node as “clkin”:

J

34/49

AN1356 - APPLICATION NOTE

Figure 39. List of Signals

Lizt of signals

ghate hit 0 “ Enter logic equation——
gtate bit 0 Clock m
gtate_bit_0 FReset ElrIr
state_bit_0 Set
Assign the reset for each state machine node as “!_reset”:
Figure 40. List of Signals
Lizt of gignals
state_hit_0 - Enter logic equation——
state bit 0 Clock | t
state bt (1 Heset ese
state_bit_0 Set

Assign the preset for each state machine node to be “Gnd”

Figure 41. List of Signals

Lizt of signals

ztate_bit_0 - Enter logic equation

ztate_bit_0 Clock, Grd
state bit 0 Feset n
istate bit [Set

Now lets implement the logic for the simple clock divider circuit shown in Figure 42.

Figure 42. Simple Clock Divider

GND

PRE

half_clkin {>O
D Q
1/2 freq of clkin

clkin

v

CLR

GND
Al04064

J

35/49

AN1356 - APPLICATION NOTE

To do this, make these logic assignments for the registered node, “half_clkin”:

= half_clkin!half_clkin

» half_clkin Clockclkin

= half_clkin ResetGnd

= half_clkin SetGnd

Moving to the down-counter, let’'s implement this simple 4-bit auto-reload down-counter, shown in Figure
43. 1t will be clocked by “half_clkin” and its output “zero” will indicate when the count has reached zero, at
which time the counter will automatically reload the initial value and count down again. The MCU will load
an initial 4-bit value just once (during a startup initialization routine) and the counter will automatically
reload this value as needed. The MCU loads the count by writing to four OMCs that we have labeled
“init_count0” through “init_count3”. The MCU just has to write to the appropriate address offset inside PSD
control register space, “csiop” to load the OMCs. See the data sheet for details on control register offsets
and functions.

Figure 43. 4-bit auto-reloading down-counter

MCU data bus
(initial count)

f—/%
MCU writes to OMCs in PSD b ¢ B A
control register space (csiop) —»] LOAD .)
to load initial count 4-bit auto-reloading
down-counter term_count ——> ZERO

half_clkin
Qp Qc QB Qa

b

Let's make assignments for the clock, reset, and preset using the Design Assistant GUI, but leave each
node input equation blank (assignment will be made later when editing ABEL file). The down-counter will
be clocked with the divided clock of Figure 42. So make these assignments for the register nodes:
down_countO, down_countl, down_count2, and down_count3.

s down_countx<blank>

m down_countx Clockhalf_clkin
s down_countx Reset ! reset
= down_countx Set Gnd

Next, make assignments for the four register nodes which hold the initial count of the down-counter. Again,
no equation will be assigned to the node inputs (this happens when editing ABEL file). Make the following
assignments for the register nodes init_count0, init_countl, init_count2, and init_count3.

= init_countx <blank>
= init_countx ClockGnd
= init_countx Reset ! reset

J

36/49

AN1356 - APPLICATION NOTE

= inti_countx Set Gnd

The clock and preset inputs are grounded because we do not want any logic overriding what the MCU has
loaded into these registers.

And finally, the combinatorial node, “term_count” needs no equation assigned from Design Assistant GUI
because it will be defined by adding statements to the ABEL file later. Leave it blank.

Click Done and you will exit the Design Assistant. At this time, an ABEL HDL file is generated and
preliminary checks are performed.

Editing the Generated ABEL HDL File
Click the box ‘Edit/Add Logic Statements’. You will see two windows pop up.

The HDL Assistant window is there for your easy reference. You may browse through it to find ABEL
language examples for various declarations and logic functions. Simply cut and paste the desired
statements into the other window that has popped up, the PSDabel Design Entry window. Note that you
may turn off the HDL Assistant feature by pulling down ‘Preference’ from the top menu and un-checking
the appropriate box.

The PSDabel Design Entry window is a text editor for the generated ABEL file. Be careful to type only
within the areas designated as “preserved” areas. If you type outside of these preserved areas, you will
loose those statements next time PSDsoft generates the ABEL file again after a design iteration in the
Design Assistant GUI.

There are two “preserved” areas, one for declarations and another for logic equations denoted by the
following:

/1 Begin user preserved declarations (not affected by iterations of DA usage)
Type your declaration statements here ...

/1 End user preserved declarations (not affected by iterations of DA usage)

/1 Begin user preserved equations (not affected by iterations of DA usage)

Type your logic equation statements here ...

/1 End user preserved equations (not affected by iterations of DA usage)

For this example design, type in the following declarations:

/1 Begin user preserved declarations (not affected by iterations of DA usage)

W5l PSD PROPERTY ' Dat aBus_OMC D 7: 4] : down_count[3: 0] " ;
/1 This PROPERTY statenent forces the alignnment of
/1 down_count bits [3..0] to the MU data bus bit positions [7..4].
/1 If this WSl PSD PROPERTY st atenent was not present, then PSDsoft
/1 woul d pick random MCU bit positions. The W5l PSD PROPERTY i s needed
/1 only if the MU wll read or wite to McroCells and only if a
/] particular MU data bus position is required by the designer.

J

37/49

AN1356 - APPLICATION NOTE

WEl PSD PROPERTY ' DataBus_OMC D[3:0]:init_count[3:0]";
/1 This statement forces the alignnment of
/1 init_count bits [3..0] to the MU data bus bit positions [3..0].

DCOUNT = [down_count 3..down_countQ]; // 4-bit down counter
INNT = [init_count3..init_countO];// 4-bit initial count from MCU

STINPUTS = [strobed_in_7..strobed_in_0];
/1 8 inputs that are stobed (sanpled) on the way into
/1 the PSD (debounced). These inputs are clocked on the
/1 opposite edge of the state machine clock (!clkin) so
/1 they are stable for each state machine transition.

STATE MACHINE = [state bit_1..state_bit_0];
/1 2 bits for 4-state state nachine. d ocked by

/1 common PSD cl ock input (clkin).

/1 End user preserved declarations (not affected by iterations of DA usage)

Now type in the following equations for the down-counter and the state-machine:

/1 Begin user preserved equations (not affected by iterations of DA usage)

[1**** 4-pbit down counter. accepts initial value fromntu, auto rel oads ****

termcount = (DCOUNT.fb == 0); // true when count reaches zero
when (termcount) then DCOUNT := INT,;
/1 automatically reload counter with initial
/1 value after a count of zero is reached

zero = termcount; /1 Assign termnal count to PSD output pin

[1**** sinple state machi ne, | ooks for predefined sequence
/1 of val ues appearing on the 8 strobed inputs *****

st at e_di agr am STATE_MACHI NE;

state O:
sequence_ok = 0; /1 indicate sequence not found yet
if ((begin ==1) & (sys_ready == 1)) then 1 el se 0;
[/l stay in this state if *begin’

J

38/49

AN1356 - APPLICATION NOTE

/] signal is zero or systemis
/1 not ready
state 1:
if (STINPUTS == "hAB) then 2 el se 1;
/] stay in this state until pattern ABh is found

state 2:
if (STINPUTS == ~hCD) then 3 else 2;
/] stay in this state until pattern CDh is found

state 3:
sequence_ok = 1;
/1 indicate correct sequence was found, then start over
goto O;

/1 End user preserved equations (not affected by iterations of DA usage)

Here is the representative state diagram of the state-machine:

Figure 44. Example State Machine

—

State 0
sequence_ok
=0

| | L

State 3
sequence_ok
=1

begin=1
& sys_ready =1

if inputs = 'AB' hex if inputs = 'CD' hex

Al04085

Finishing the design

Click the ‘Fit Design to Silicon’ box. After a successful fit, click the ‘Merge MCU Firmware’ box, and follow
the same procedure used in the first design. No firmware filename needs to be designated for the main
PSD Flash memory segments (fsO — fs7) since they will be programmed by the P51XA during IAP. Click
OK in the merging screen to create a composite object file, logicXA.obj, for programming. You are now
ready to program the PSD as described in the section entitled “Programming the PSD” on page 21.

J

39/49

AN1356 - APPLICATION NOTE

THIRD DESIGN EXAMPLE — ISP AND ADVANCED IAP
The third design example adds enhanced IAP features. The physical connections between the MCU and
PSD4235G2 do not change, but chip-selects (memory map) and PSD page register definitions do change.
We will not change any of the CPLD logic in this design.

This enhanced design derives the most utility out of the PSD architecture by providing a means to replace
the secondary PSD Flash memory with a segment of main PSDflash memory (swapping) after IAP is
complete. These benefits result:

= IAP bootloader code in secondary PSD Flash memory can be updated in the field while executing from
main PSD Flash memory.

= The entire application can be executed from main Flash memory after IAP is complete.

= The system software designer can make use of two sets of MCU interrupt vectors/routines and low-level
code: one set during IAP (contained in secondary Flash memory) and a different set after IAP
(contained in main Flash memory).

» The secondary PSD Flash memory can be split in half. One half used for boot loader code during IAP
and the other half used as general data storage after IAP.

Memory Map

The memory map for this design is a sequence of four steps shown in Figure 45 through to Figure 48.
Figure 45 is the memory map at system power-on or system reset. The swap bit and unlock bit are defined
as two of the eight PSD page register bits. Here’s the sequence after power-up or reset:

n Figure 45: P51XA boots from secondary Flash memory (csbootO/csbootl) at address 0000, the VM
register contains the initial value of 12h from the point-and-click settings in PSDsoft.

n Figure 45: P51XA performs a checksum of main Flash memory (fs0..fs7) in Data space

= Figure 45: P51XA downloads to main Flash memory from host computer if needed and validate
contents

m Figure 45: P51XA writes 06h to PSD VM register
m Figure 46: Main Flash memory has moved to Program space because of 06h in VM register
m Figure 46: P51XA sets swap bit to logic one (writes to PSD page register)

m Figure 47: Secondary Flash memory (csbootO/sbootl) has moved out of the MCU address range 0000
to 3FFF and main Flash memory (fsO) has moved into its place because of the swap bit. This swapping
action is implemented by qualifying the chip-selects with the swap signal. Also as a result of setting the
swap bit, the secondary Flash memory segments csboot2 and csboot3 appear. They cannot be used
for data until after the next step.

n Figure 47: P51XA writes 0OCh to PSD VM register.

m Figure 48: Secondary Flash memory (csboot0..cshoot3) has moved to Data space because of OCh in
VM register. Now secondary Flash memory segments csboot2 and csboot3 can be used for general
data.

Figure 48 shows the final memory map. The P51XA now has a full 512 KBytes of main Flash memory (fsO
.. fs7) in Program space, 16 KBytes secondary Flash memaory (csboot2/csboot3) in Data space for general
data storage, as well as 8 KBytes of battery backed SRAM (rs0) in Data space. The 16 KBytes of IAP
loader code (csbootO/csbootl) is no longer in MCU “executable” position.

If the P51XA needs to update the IAP loader code that resides in secondary Flash memory segments
csboot0 and csbootl, it may do so only after setting the unlock bit in the page register. Note that all page
register bits are cleared to zero at power-on and at any system reset.

J

40/49

AN1356 - APPLICATION NOTE

Figure 45. Memory Map at Boot-Up or Reset and During IAP @

P51XA P51XA
Program Space Data Space
8FFFFh fs0 8FFFFh
64K bytes PSD 64K bytes
Main Flash 80000h
fs7 7FFFFh
64K bytes PSD 64K bytes
Main Flash 20000h
fs6 6FFFFh
64K bytes PSD 64K bytes
Main Flash 60000h
fs5 5FFFFh
64K bytes PSD 64K bytes
Main Flash 50000h
fs4 4FFFFh
64K bytes PSD 64K bytes
Main Flash 40000h
nothing mapped fs3 3FFFFh
64K bytes PSD 64K bytes
Main Flash 30000h
ts2 2FFFFh
64K bytes PSD 64K bytes
Main Flash 20000h
fol 1FFFFh
64K bytes PSD 64K bytes
Main Flash 10000h
OFFFFh
nothing mapped
0AO000h
rs0, 8k bytes PSD SRAM 08000h - 09FFFh
csiop, PSD cnti regs 07000h - 070FFh (84K bytes
04000h Icd_e, ext LCD chip sel 06000h - 06001h
(Note 2) {02000h - 03FFFh | cshootl, 8Kb PSD 2nd Flash nothing mapped 00400h - 05FFFh
00000h - 01FFFh | cshoot0, 8Kb PSD 2nd Flash P51XA-G3 Regs/SRAM 00000h - 003FFh
SWAP bit=0
VMreg =12h
UNLOCK bit=0
Al04073
Note: 1. PSD VM register initially 12h, Main PSD Flash memory in Data space.
2. IAP loader code gets programmed here by JTAG-ISP or conventional programmer tool.
1S7i 41/49

AN1356 - APPLICATION NOTE

Figure 46. Memory Map just after P51XA writes 06h to PSD VM register

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

8FFFFh

80000h
7FFFFh

70000h
6FFFFh

60000h
5FFFFh

50000h
4FFFFh

40000h
3FFFFh

30000h
2FFFFh

20000h
1FFFFh

10000h
OFFFFh

04000h
02000h - 03FFFh
00000h - 01FFFh

P51XA
Data Space

P51XA
Program Space

fsO
64K bytes PSD
Main Flash

fs7
64K bytes PSD
Main Flash

fs6
64K bytes PSD
Main Flash

fs5
64K bytes PSD
Main Flash

fsa nothing mapped

64K bytes PSD
Main Flash

fs3
64K bytes PSD
Main Flash

fs2
64K bytes PSD
Main Flash

fsl
64K bytes PSD
Main Flash

nothing mapped rs0, 8K bytes PSD SRAM

csiop, PSD cnti regs

Icd_e, ext LCD chip sel

cshootl, 8Kb PSD 2nd Flash nothing mapped

csboot0, 8Kb PSD 2nd Flash P51XA-G3 Regs/SRAM

SWAP bit=0
VM reg = 06h
UNLOCK bit=0

8FFFFh

0A000N

08000h - 09FFFh
07000h - 070FFh
06000h - 06001h
00400h - 05FFFh
00000h - 003FFh

Al04074

Note: IAP complete, main PSD Flash memory moves to Program space

42/49

J

AN1356 - APPLICATION NOTE

Figure 47. Memory Map just after P51XA sets swap bit=1

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

8FFFFh

88000h
< 86000h - 87FFFh
84000h - 85FFFh
82000h - 83FFFh

80000h - 81FFFh
7FFFFh

70000h
6FFFFh

60000h
5FFFFh

50000h
4FFFFh

40000h
3FFFFh

30000h
2FFFFh

20000h
1FFFFh

10000h
OFFFFh

00000h

P51XA
Program Space

P51XA
Data Space

nothing mapped

csboot3, 8Kb PSD 2nd Flash

csboot2, 8Kb PSD 2nd Flash

csbootl, 8Kb PSD 2nd Flash

csboot0, 8Kb PSD 2nd Flash

fs7
64K bytes PSD
Main Flash

fs6
64K bytes PSD
Main Flash

fs5
64K bytes PSD
Main Flash

fs4
64K bytes PSD
Main Flash

fs3
64K bytes PSD
Main Flash

fs2
64K bytes PSD
Main Flash

fsl
64K bytes PSD
Main Flash

nothing mapped

rs0, 8k bytes PSD SRAM

csiop, PSD cnti regs

fsO
64K bytes PSD
Main Flash

Icd_e, ext LCD chip sel

nothing mapped

P51XA-G3 Regs/SRAM

8FFFFh

0A000h

08000h - 09FFFh
07000h - 070FFh
06000h - 06001h
00400h - 05FFFh
00000h - 003FFh

Al04075

Note: IAP loader code is swapped away, main PSD Flash memory takes its place.VM reg = 06, unlock = 0

J

43/49

AN1356 - APPLICATION NOTE

Figure 48. Memory Map just after P51XA writes 0Ch to PSD VM register)

P51XA P51XA
Program Space Data Space
8FFFFh 8FFFFh
nothing mapped
64K bytes nothing mapped
csbootl, 8Kb PSD 2nd Flash | 86000h - 87FFFh
80000h csboot0, 8Kb PSD 2nd Flash | 84000h - 85FFFh {0 5
7EFEEh P~ csbootl, 8Kb PSD 2nd Flash | 82000h - 83FFFh
64K bytes { 64K bytes PSD csboot0, 8Kb PSD 2nd Flash | 80000h - 81FFFh
70000h Main Flash
6FFFFh fs6
64K bytes 64K bytes PSD
60000h Main Flash
5FFFFh ts5
64K bytes 64K bytes PSD
50000h Main Flash
4FFFFh fs4 nothing mapped
64K bytes 64K bytes PSD
40000h Main Flash
3FFFFh fs3
64K bytes 64K bytes PSD
30000h Main Flash
2FFFFh fs2
64K bytes 64K bytes PSD
20000h Main Flash
64K bytes 64K bytes PSD rs0, 8k bytes PSD SRAM | 08000h - 09FFFh
10000h Main Flash csiop, PSD cnti regs 07000h - 070FFh
OFFFFh fsO Icd_e, ext LCD chip sel 06000h - 06001h
64K bytes PSD nothing mapped 00400h - 05FFFh
00000h Main Flash P51XA-G3 Regs/SRAM | 00000h - 003FFh
SWAP bit=0
VM reg =0Ch
UNLOCK bit=0
Al04076

Note: 1. Secondary PSD Flash memory moves to Data space. swap = 1, unlock =0
2. IAP loader code only accessible if UNLOCK bit = 1.

Each time this P51XA system gets reset or goes through a power-on cycle, the PSD presents the memory
map of Figure 45 to the MCU, and the boot sequence is repeated.

Note: When the P51XA is executing code from the secondary PSD Flash memory (csboot0 and csbootl),
and then it sets the swap bit, it is very important that the P51XA firmware linker has set up “synchronized”
code in the segment of main PSD Flash memory that replaces the secondary PSD Flash memory. This is
necessary to create seamless MCU operation during the actual swap of memory since the P51XA is
completely unaware that there is a swap going on. It just continues to fetch opcodes and operands during
the memory swap. This requires that the operands and opcodes in main PSD Flash memory that follow
the MCU instructions that actually set the swap bit in the secondary PSD Flash memory, are continuous.
This means that the remainder of the instructions to complete setting the swap bit is present in main PSD
Flash memory so there is continuous operation throughout the memory swapping process.

44/49 ﬁ

AN1356 - APPLICATION NOTE

PSDsoft Express Design Entry

To implement the advanced memory maps of Figure 45 through to Figure 48, invoke PSDsoft Express,
open the project “logicXA” from the second design example (if not already open). Now pull down the menu
‘Project’ from the top of the screen, and select ‘Save As’. For this third design example, save the second
project under the new name “advancXA”. Now click on the ‘Define PSD Pin/Node Functions’ box in the
design flow diagram. Click Next >> to get to the ‘Page Register Definition’ screen since no pin
assignments need to be changed for this third design.

Page Register Definition

You will need to define two additional PSD page register bits to be used for logic as shown below labeling
one bit “swap” and the other bit “unlock”.

Figure 49. Page Register Definition

=l Dezign Assistant

Fage Register Definition | Chip Select Equations | I¥0 Lagic Equations

Define how individual PSD page register bits will be used.
Each bit added for 'paging’ can double the MCU address range. Start with parO.
E ach bit added for 'logic’ can be used as logic input to the PLDs. Start with par?.

— Define use of page regizter bitz
Page Feg Bit Type of Uze Mame of Logic Signal

pare: [" paging W logic I;gwap—
park: [paging [logic W
PO [paging [logic I—
pard: [paging [logic I—
pord: [pagng © logic Ibegin—
par: [paging [logic I—
parl: [~ paging [logic I—
parll: [paging [logic I—

— Description

Select this bit for general logic. Always start with pgr? and add more -
bitz going downwards. Page register bitz uzed in this manner implement
general logic signals that are inputs to the PLDs. Enter the logic signal _I
-
Nth>> Reset Al Yigw Dane | Cancel |

Click Next >>.

Chip-Select Equations

The chip-select equations for PSD SRAM (rs0), PSD control registers (csiop), and the external LCD
module (Icd_e), and most of the internal PSD memory segments do not change from the second design
example. Only chip-selects for main PSD Flash memory segment fsO, and the secondary PSD Flash
memory segments csbootO — csboot3 need to change for this third design because they are affected by
memory swapping.

These internal memory chip-selects must be qualified with the page register bit “swap” as shown below.
The secondary PSD memory segments, csboot0 and csbootl, must be additionally qualified by “unlock”

‘ﬁ 45/49

AN1356 - APPLICATION NOTE

to prevent the MCU from inadvertently writing to IAP boot and loader code after IAP is complete. The
following illustrates how the chip-selects will look when you enter their definition based the memory maps

of on Figure 45 through to Figure 48.

Figure 50. FSO Address Range

Lizt of chip zelects — Enter zpztem memary information

1=l Fage Hex Start Hex End Logical AMD of Signal Qualifiers
cio M urnber Address Address [more than one OF)]
Mfﬂ rEI [30000 g [SFFFF g [lswap

fz2

f=3 Logical OF with nest statement:

fz=d

5 [g [FFFF g [owar

g

-

Figure 51. CSBOOTO Address Range

Lizt of chip selects — Enter apztemn memony infarmation

r= Page Hex Start Hex End Logical ARD of Signal Qualifiers
ciop I umber Addresz Addrezz [rmiore thah one OF)
fz =

o1 rEI i |0 i [IFFF g [lowap

fz2

f=3 Logical OR with next statement:

fz4

fs5 —, [soo00, [BIFFF 4 [swap & unlock

55 = | |
m Logical OF with next statement:

-

Figure 52. CSBOOT1 Address Range

Lizt of chip selects — Enter spztem memony infarmation

r= Page Hex Start Hex End Logical ARD of Signal Qualifiers
csiop I umber Addresz Addrezz [rore thanh one OF)
fz =

o1 rEI g 2000 g [FFF g [lwap

fa2

f=3 Logical OR with next statement:

fz4

fs5 ., [se000, [e3FFF 4 [ewap & unlock
=0 | |

fe? Logical OF with next statement;

czboot(]

[1 | |

-

46/49

J

AN1356 - APPLICATION NOTE

Figure 53. CSBOOT?2 Address Range

Lizt of chip zelectz — Enter spztem memary information _I
1=l Page Hex Start Hex End Logical AND of Signal Qualifiers
Ciop Humber Addrezs Addreszs [rmaore than one OF)
e [=] poonn | g [5FFF g [owap
fa2
(7% Logical OF with nest statement;
fz4
=

- =% IS Y
fe/ Logical OF with nest statement;
czhootd
cshioot] =

= | | -

cshoat 3

— Pacilbzmb smnisbise

Figure 54. CSBOOT3 Address Range

Lizt of chip zelectz — Enter gpstem memary information _I
1=l Page Hex Start Hex End Logical AMD of Signal Qualifizrs
ciop Mumber Addrezs Addrezs [mare than one OF)]
f=0 =
e I_EI g [B000 g [STFFEy fswap
fz2
f=3 Logical OF with next statement:
fz4
- = % I Y
%
fa/ Logical OF with nest statement;
czhootd
czhaoat] =
czhoot? I_;| B I & I 2 I j

o — Resultant eguation |

Notice that these PSD physical memory segments can appear in more that one MCU address space
depending on the “swap” and “unlock” qualifiers. Now the memory maps of Figure 45 through to Figure
48 have been implemented. Click Done and you should see the main flow diagram.

Finishing the design

There’s no need to edit the the ABEL HDL statements since we have not touched the CPLD. Click the ‘Fit
Design to Silicon’ box. After a successful fit, click the ‘Merge MCU Firmware’ box. You will see an
informational dialog box pop up that indicates non-natural address signals were used in PSD chip-select
equations. This is because of the “swap” and “unlock bits”. PSDsoft displays this message to remind you
that your MCU compiler/linker should account for any non-naturual MCU address signals. Click OK, since
this does not apply to our example.

Now specify the file name \PSDsoft\Examples\boot_16K.hex for segments csboot0 and csbootl. There is
no P51XA firmware in this file, it is used only for illustration. You will find the pattern AAh in csbootO, and
the pattern BBh in csbootl. No firmware filename needs to be designated for the main PSD Flash memory
segments (fsO — fs7) since they will be programmed by the P51XA during IAP. No firmware file needs to

‘ﬁ 47/49

AN1356 - APPLICATION NOTE

be specified for secondary PSD Flash memory segments csboot2 and csboot3 because these will be used
for general purpose data written by the P51XA. Click OK in the merging screen to create a composite
object file for programming. You are now ready to program the PSD as described in the section entitled
“Programming the PSD” on page 21.

CONCLUSION

These examples are just three of an endless number of ways to configure the EasyFLASH PSD for your
system. Concurrent memories with a built-in programmable decoder at the segment level offer excellent
flexibility. The ability to expand your system does not require any physical connection changes, as
everything is configured internal to the PSD. And finally, the JTAG channel can be used for ISP anytime,
and anywhere, with no participation from the MCU. All of these features are crosschecked under the
PSDsoft Express™ development environment to minimize your effort to design a Flash memory-based
system capable of ISP and IAP.

REFERENCES
1. PSD4235G2 Data Sheet
2. Application Note AN1153— JTAG Information—PSD8XXF for detailed use of the JTAG channel

J

48/49

AN1356 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)
ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.

[J 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

573 49149

