Design Guide: PSDsoft 2000 and PSD4235G2
Application Note ANO70

By Mark Rootz

July, 2000

Revision 1.1

110 Ports
——

" Flash
: 2*Flash

ar EEFHIM
SRAM
Progiramialie Ld ic

Security PMU .

MCU Interlace

I.f['i"Pmls

Waferscale Integration Inc.
47280 Kato Road, Fremont, CA 94538
Telephone: (510)-656-5400
(800) TEAM-WSI (832-6974)
Web Site: http://www.waferscale.com
E-mail: info@waferscale.com

Contents

IWIN 1=

I~

o

INIo

o o [T3 1 o N 2
| md 01 VAT (o= 1 I @] g =Y 170 I 5
First Design Example—ISP Capable System, LIMIted TAP.........u i 6

3.1 MEIMOIY MBI ettt e et e et e et r e et et e e e ettt e e e e et ba e s ¢ me———— 7

3.2 PSDSOft 2000 DESION ENEEY . ciiiiieeeeeieeei ettt ettt e aeeabbbsbee e e e eeeeeaeaaaaaaaaaeaaeaaaaaaannnns 8
I R O] o Y=Y 1= W NN LTV = (0 1= o1 ST 8
3.2.2 (OO a o I ST B ST = (=T ox 1o | o TR 9
3.2.3 a1 I Y i V10 T 10...
3.2.4 Page REQISIEN DEIINMITION.cccueiieeeeeete ettt e et e et e e e e e et e e e e et e s e st e s s st e e setesenta e saaneenenass 12
3.2.5 _Chip Select Equations (SyStem MEMOIY MAD).......ceeeeeaaeeeieiiaaaaieeetteteeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaaannnenes 12
I T 1@ o | Tl o (U= 1] g I 16
I A 1= Y T T sl [0 VR 17
IV T Vo o [1 i o) o T=1 Il AT B IS =Y £ 2T 18
I I | A B LYy o [T o T[T o N 18
3.2.10 PSD-Specific C Code GENEIALIANuuuiiiiiiiieeee e ee et e e et e e s e e e e s e e st e e e ssaaaeeeseesanaeeeens 18
3.2.11 Merge MCU Firmware WIth PSD.......coocuuuiiiiiiiii ettt e e s e e s e et e e e s s aaa e e e s seaanaeeaens 19
3.2.12 Programming the PSDD........un ettt et et et e e e et e e e et e e e e e s et e e e et e e ran e sraneenanas 21
Second Design Example — ISP, Full IAP & CPLD LoQiC EI€MENIS.......cccvuiiiiiiiiiieeeeeeeeeee e 23

4.1 Y =T 0 Te] VALY = o TP POUOUPP 23

4.2 PSDSOft EXPIrEeSS DESIGN BN ...ttt ettt et e e et e e aaeaaaaeeaasaaa s nnennbeneeeeeeees 25
4.2.1 a1 I DY i V1 T0] T 26...
A - (o (<Y =T o 1) =Y AT 27
R T 1 (© WY o (ol = [V =110 g 28
4.2.4 User-defined NOUE EQUALIONS.ccvvuuiieiiiiet e eeei e et e e e e et e e e s eab s e e s sabaa s eesesbanseessssaneseeraraanaeees 29
4.2.5 Editing the Generated ABEL HDL FilE......ccoivuuiiiiiiiei e e e e 33
s T 10 11 41T Y0 IR Y=Y 0 [T o o 36
Third Design Example — ISP and AdVANCEA LAP.........oue it e e e e eaaas 36

5.1 Y =T 0 Te VALY = o DT P PUOUP P 37

5.2 PSDSOft EXPIrEeSS DESIGN BN ...ttt ettt ettt e e e e e aaaaeaaeeaasaaaannneenbenbeeeeeees 40

5.2.1 g Lo [l Yo [(Y Gl B I=] {1 AL o) TR 40
5.2.2 Chip-Select Equations
5.2.3 FiNISNING the GESIGIN ... uueiitiiiiiiieeee ettt et et e e e e e e e e e e e e e e e e be bt e e e e e e e eeaaaaaaaaaaaaans
(Ofo] o o1 (U1 o] o NPT

R (=] (= 07T

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 1

1 Introduction

EasyFLASH™ PSD4X35G2 devices are members of a family of flash-based peripherals for use
with embedded microcontrollers (MCUs) or microprocessors (MPUs). These Programmable
System Devices (PSDs) consist of memory, logic, and 1/0O. When coupled with a low-cost,
ROM-less MCU/MPU, the PSD forms a complete embedded flash system that is 100% In-
System-Programmable (ISP). There are many features in the PSD silicon and in the PSDsoft
2000™ development software that make ISP easy for you, regardless of how much experience
you have in embedded flash design.

This document offers three designs using a Waferscale PSD4235G2 and a Philips P51XA MCU.
Note that a variety of 16-bit MCU/MPUs can be used in place of the Philips part. Although the
specifics of this document are based on the P51XA-G30, this document can be used as a guide
for other MCU/MPU applications. The first design is a simple system to get up and running
quickly for basic applications, or to check out prototype hardware. The second design illustrates
the use of concurrent memory operation for field-updates and includes the use of programmable
logic. The third design highlights advanced concurrent memory operation. You can start with the
first design and migrate to the second and third as your requirements grow. Another member of
the PSD4X35G2 family, the PSD4135G2, is a lower cost device with a subset of features of the
PSD4235G2. See data sheets and ANO69 for details.

In-System Programming and In-Application re-Programming

Our industry uses the term In-System Programming, or ISP, in a general sense. ISP is applicable
to programmable logic, as well as programmable Non-Volatile Memory (NVM). An additional
term will be used in this document: In-Application re-Programming (IAP). There are subtle yet
significant differences between ISP and IAP when microcontrollers are involved. ISP of memory
means that the MCU is off line and not involved while memory is being programmed. IAP of
memory means that the MCU participates in programming memory, which is important for
systems that must be online while updating firmware. Often, ISP is well suited for
manufacturing, while 1AP is appropriate for field updates. PSD4X35G2 devices provide both ISP
and IAP. Keep in mind that IAP can only program the memory sections of the PSD, not the
configuration and programmable logic portions. ISP can program all areas of the PSD.

The IAP Problem

Typically, a host computer downloads firmware into an embedded flash system through a
communication channel that is controlled by the MCU. This channel is usually a UART, but any
communication channel that the MCU supports will do (CAN, MODEM, USB, J1850, etc). The
MCU must execute the code that controls the IAP process from an independent memory array
that is not being erased or programmed. Otherwise, boot code and flash programming
algorithms (IAP loader code) will be unavailable to the MCU. It is absolutely necessary to use
an alternate memory array (an independent memory that is not being programmed) to store the
IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM,
SRAM, FLASH, or EEPROM) as each type has advantages and disadvantages. This alternate

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 2

memory may reside external to the MCU or on-board the MCU. A top-level view of an
embedded IAP flash system with external memory is shown in Figure 1.

| Main Flash Memory

A

Host Communication " 256K Bytes
Channel > .
Computer 16-bit | R P | Alternate Memory
MCU/MPU for IAP Loader Code
Y CPLD
=l PN System SRAM)
8K Bytes
System
110
Embedded System

Figure 1—Embedded flash system capable of IAP (5 devices)
A Common Solution

Without a PSD device, implementing IAP with the P51XA and most other 16-bit MCUs can be
difficult, expensive, and time consuming. Many P51XA designers will use external or internal
PROM to implement a boot-loader using the P51XA UART to download code from a host
computer into P51XA SRAM (Philips application note AN97019). P51XA execution then
jumps to the SRAM to execute the remainder of the download process to program flash memory.
This is a cumbersome and error prone exercise using re-locatable code in volatile memory which
is difficult to debug, vulnerable to power outages, and not supported by all emulators.
Additionally, it is an expensive task to update the IAP loader code that is stored in PROM.

A Better, Integrated Solution

Figure 2 shows a two-chip solution usingBasyFLASH PSD4235G2. This system has ample
main flash memory, a second alternate flash memory to hold the IAP loader code and general
data, and more SRAM. All three of these memories can operate independently and concurrently;
meaning the MCU can operate from one memory while erasing/writing the other. This allows the
MCU to continue normal operation (at possibly a reduced level) during IAP, which is crucial for
some applications. This system also has programmable logic, expanded 1/O, and design security.
The two-chip solution is 100% programmable in the factory or in the field.

Communication
PSD4X35G?2
Host Channel R JTAG
Computer | 16-bit * 512K Bytes Flash ISP
MPU/MCU [”] * 32K Bytes Flash
* 8K Bytes SRAM 5 System
=1|[€ * Programmable Logic 10
*1/0
Embedded System

Figure 2 — Embedded flash system capable of ISP and IAP (2 devices)

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 3

By design, the IAP method described above requires MCU participation to exercise a
communication channel to implement a download to the main flash memory. The PSD4235G2
also offers an alternative method (ISP) to program the PSD using a built-in IEEE-1149 JTAG
interface requiring no MCU participation. This means that a completely blank PSD can be
soldered into place and the entire chip can be programmed in-system in just a few seconds using
Waferscale’s FlashLINK' JTAG cable and PSDsoft development software. No P51XA
firmware needs to be written, just plug in the FlashLINKable to your PC parallel port and

begin programming memory, logic, and configuration. This is a powerful feature of the
PSD4235G2 that allows immediate development of application code in your lab, smart
manufacturing techniques, and easy field updates.

The FlashLINKM cable and PSDsoft 2000 are available from our website, www.waferscale.com
together for $99 USD (credit cards are accepted).

Let’s take a quick look inside the EasyFLASRSD4235G2, as shown in Figure 3. You can see

the three independent memory arrays, which are selected on a segment basis when the propet
MCU address is decoded in the Decode PLD. The page register participates in memory
decoding, which greatly simplifies paging. The MCU address, data, and control signals are
routed throughout the chip and can be used within the Complex PLD (CPLD). The CPLD has 16
Output Microcells (OMCs), each containing a flip-flop and combinatorial logic. The CPLD also
has 24 Input MicroCells (IMCs) used for conditioning incoming signals. The MCU has direct
memory-mapped access to both OMCs and IMCs. Additionally, the CPLD contains 8
programmable external chip-select outputs. There are 52 I/O pins that can be individually
configured for many different functions. A power management scheme can selectively shut
down parts of the chip and tailor special power saving mechanisms on-the-fly. The security
feature can block access to all areas of the chip from a device programmer/reader. Finally, the
self-contained JTAG-ISP controller allows programming of all areas of the chip.

In the second design example of this document, you will see how to use the CPLD to implement

a loadable counter, a state machine, combinatorial logic, and other functions using OMCs, IMCs,
the page register, and external chip-selects.

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 4

PSD4235G2 MCU Address/Data/Control Bus
m] —) <
= Page 5
8 Re% 512 Kbyte . L |ty
= : Primary Flash = 3| 0
() 2 8 Segments Q
-
= | Decode —— Second Flash T <
PLD 4 Segments S |ty
3 Q
Q » 8 Kbyte SRAM |« ~
5 §
-
= R Power CPLD.- ‘)
= 5 Mgmt. 16 Out?outMl\/(l:l;:roCells ¢ £ A
| 24 InputMicryoCells a %
(IMC) =
8 External
>
8 § Chip-selects ‘:_’ @
> o g
a g ITAG | S
b= Controller
I/O Port G I/O Port F I/O PortE

! ! !

Figure 3—Top Level Block Diagram of PSD4235G2

2 Physical Connection

Connect your P51XA to the PSD4235G2 as shown in Figure 4. The JTAG programming
channel, LCD module, system 1/O, MCU 1/O signals, and battery back up are optional. They are
present in this application note to illustrate PSD functions.

There are four unused PSD 1/O pins in this example. Unused pins should be pulled to Vcc with a

100K resistor or tied to GND. Also, see Application Note 54 for more information on the JTAG-
ISP connection options.

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 5

Note: Pullup (100K) or ground 40..d7
all unused inputs. - DATA BUS
2x 16 LCD
Up to 27MHz PEO PB led_e E MODULE
— == x7AL1 P1.1AL 2 PF1 PB1 [RIW
3 P1.2/A2 %3 PF2 PB2 RS
———— XTAL2 P1.3/A3 PF3 PB3 |-
PB4 |-
IEAIVpp/WAIT P0.0/A4DO 2419 ADIOO PBs |80 System Output
v P0.1/A5D1 26702 ADIO1 PB6 secuence ok System Input
P0.2/A6D2 2773 ADIO2 PB7 System Output
e R |
—p3amo P0.5/A9D5 ag/ds ADIOS5 PALY strobed in 1
’ PO é/AlODG 210/d6 ADIO6 PA2 | strobed_in_2
' all/d7 PA3 | strobed_in_3
P14/RXD1 P0.7/A11D7 ADIO?7 ¥ = System
UART port 1 AIRX strobed_In ot
P1.5/TxD1 P2.0/A12D8 a12/d8 ADIOS PAS5 [strobed_in p
P2.1/A13D9 al3/d9 ADIO9 PAG6 | strobed_in
P2 é/AlADlO al4/d10 ADIO10 PAT | strobed_in
UART port 0 Eg'(l)ﬁ;gg P2.3/A15D11 alsiil ADIO11
: P2.4/A16D12 ST ADIO12
P2.5/A17D13 ST ADIO13
P2.6/A18D14 STeTdTE ADIO14
47K P2.7/A19D15 ADIO15 General
) Purpose 1/0
10K 47K P3.6/IWRL wil CNTLO (IWR)
P3.2/lINTO P3.7/IRD 'dsen CNTL1 (IRD)
P3.3/INT1 IPSEN L CNTL2 (IPSEN) meuio pfd
PF4
P3.5/T1/BUSW ALE/PPROG ale PDO (ALE) PF5 |noid ;g General
PD1 (CLKIN) PF6 Purpose 1/0
wih PD2(ICSI) pF7 Jmeuio_pf7 P
P1.0/A0/!W RH PD3 (IWRH) meuio a0
PGO
reset 1
P51XA-G30 IRST IRESET Eg% >
PG3 i General
PG4 3 Purpose 1/0
P51XA internal bus control register settings for 70 nsec Egg 6
PSD and 27 MHz Crystal: PSD4235G2-70 PG7 7 T_
ALEW =1
CR1/0=10 CRAL/0=0,1 PEC ((Pé% ek
DR1/0 = 1,0 D_RAl/O =0,1 PE2 (TDI) tdi JTAG-ISP
WM1/0 = 0,1 tdo
DWAL/0=1,1 PEF;E&&%% tStal Connector
PE5 (ITERR) terr .
PE6 (VSTBY) RST
SYSTEM_CLOCK PETIVBATON) [~ I
ISYSTEM_RESET
—
3.6V +
Lithium —

Battery f

Figure 4 — Physical Connections, P51XA and PSD4X35G2

3 First Design Example—ISP Capable System, Limited IAP

The first design example is capable of ISP and limited IAP. It outlines the steps required to get a
flash P51XA system up and running quickly. The 32K bytes of PSD secondary flash will be
programmed with P51XA firmware (over the JTAG-ISP channel) that will execute low-level
system hardware tests. This firmware will also be able to access 512K bytes of main PSD flash
memory, used as data only ... not program space. This will provide a way to develop code to
erase and write to main PSD flash memory while executing from secondary flash memory. The
second and third design examples will take full advantage of concurrent memory operation and
IAP, by allowing program execution from main flash memory in addition to writing to it. You

should become familiar with this first design before using the second and third.

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com

3.1 Memory Map

For this first simple design, a PSD4235G2 is used with the following memories:
+ 512 Kbytes main flash memory, broken into eight 64 Kbyte segments denqtegl/s
» 32 Kbytes secondary flash, broken into four 8 Kbyte segments denoted gsbgpt
» 8 Kbyte SRAM denoted rsO
» 256-byte PSD4235 control registers denoted csiop.

Note: PSD memory segment address locations are defined using PSDsoft 2000™.

We'll use the PSD’s secondary flash memory to hold the boot code, P51XA interrupt vectors,
hardware drivers, and common functions including routines that erase/program main PSD flash
memory. For this example, we’ll execute from the PSD’s secondary flash memory only and use
the PSD’s main flash memory as data. See the memory map in Figure 5.

programmer tool.

P51XA | P51XA
Program Space . Data Space
8FFFFI - [fs0 8FFFF
I I ' 64K bytes PSD 64K bytes
I I i Main Flash 80000
| | X fs7 7FFFF
| | ' 64K bytes PSD 64K bytes
I Main Flash 70000
I I : fs6 6FFFF
| | | 64K bytes PSD 64K bytes
I I . Main Flash 60000
'
| | | fs5 5FFFF
64K bytes PSD 64K bytes
| | . Main Flash 50000
| | [fsa 4FFFF
I nothing mapped I ' 64K bytes PSD 64K bytes
I I I Main Flash 40000
| | X fs3 3FFFF
! 64K bytes PSD 64K bytes
I I I Main Flash 30000
I I . fs2 2FFFF
| | | 64K bytes PSD 64K bytes
. Main Flash 20000
I I | fs1 1FFFF
| | 64K bytes PSD 64K bytes
' .
I I X Main Flash 10000
| , OFFFF
I I nothing mapped
| | X 0A000
. 08000 rs0, 8K hytes PSD SRAM | 08000 - 09FFF
F;Et;XrAO fl:;n,x/;;ed 06000 - 07FFF |csboot3 , 8kB PSD 2nd Flash I csiop, PSD cntl regs 07000 - 070EF 64K bytes
ﬁere g ?TAG_,SP 04000 - 05FFF [csboot2 , 8kB PSD 2nd Flash : Icd_e, ext LCD chip sel | 06000 - 06001
or coJr/wentionaI 02000 - 03FFF |csbootl , 8kB PSD 2nd Flash nothing mapped 00400 - 05FFF
00000 - 01FFF |cshoot0 , 8KB PSD 2nd Flash I P51XA-G3 Regs/SRAM | 00000 - 003FF
'

Figure 5—Memory Map: Simple P51XA/PSD4235G2 Design

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com

3.2 PSDsoft 2000 Design Entry
Highlights of design entry will be given here. Follow along using PSDsoft 2000 if you wish.

3.2.1 Open a New Project

* Invoke PSDsoft 2000.

» Create a new project.

» Select your project folder and name the project (in this example, name the project
“simpleXA” in the folder PSDsoft\my_project).

» Select an MCU. In this example, we're using a Philips P51XAG3x.

» Select /WRL, /RD, /IPSEN, /WRH, Burst Mode for the control signals.

» Select the PSD4000 series for the PSD Family.

» Select a PSD4235G2 and use the 80-pin TQFP package (U package).

 Based on the above selections, the MCU bus will be automatically set to 16-bits
multiplexed.

» Select the main PSD flash memory to reside in Data space upon power-up.

» Select the secondary PSD flash memory to reside in Program space upon power-up.

The selection of Program space or Data space for the flash memories determines whether or not
the P51XA signals, PSEN or RD respectively, will activate the output enables of the individual
PSD flash memory arrays upon power up. You will learn in the second and third designs that this
setting can be changed by MCU firmware at runtime to implement IAP. Note that this applies
only to MCUs with the Harvard architecture (separate address spaces for code and data). For
MCUs with Von Nueman architecture (a single linear address space for code and data), the menu
choice for Program and Data space does not apply and does not appear.

Now you have your project established based on a PSD4235G2 and a P51XAG3. The PSD will
be compatible with the “burst mode” feature, unique to the P51XA, meaning that the special use
of the lower four non-multiplexed address bits (a0..a3), the shifting of the upper address bits
(a4..a19), and opcode reads with no ALE pulse are automatically supported by the PSD.

Although this document uses the Philips P51XA as a detailed example, the methods and

examples within are very similar for other MCU/MPUs. PSD silicon adapts to many different
MCU/MPU interfaces automatically based on selections in PSDsoft.

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 8

3.2.2 MCU and PSD Selection
This is what the screen should look like after you’'ve made the selections:

MCU and PSD Selection
Step 1: Select Microcontroller [MCU] Step 2: Specify the PSD device
Select an MCU and its control signal options. If your MCU does Uze product selection wizard.

£ the list, select 'Other’, th ify it trol signal)
not appear on the: list, selec er', then specify its contral signa \wizard.

configuration. Check |atest MCU and PSD data sheets to confirm
PSD Family: PSO4000 -

AL timing compatibiliy,

M anufacturer: ™

ANUISCIIED |Ph||||:'3 j Part Mumber: PSO4295G2 -
Tvee [P513G3x =l Peckess [U@oPnTarr) =
Contiol Sianals: s,/ /RD, /PSEN, MWRH, BurstMode] || vokage: 45WES5/

Step 3: MCU Parameters

Select a particular configuration for the MCUAPSD interconnection.

Buss Wwidth: [16-bi |
Bus Mode: | ultiplexed Bus ﬂ
ALE/AS Active-level: |High ﬂ

Main PSD flash memorny will reside in this space at power-up:

[lata Space Only

Secondary PSD flash memory will rezide in thiz space at power-up: |F'rogram Space Only ﬂ

Diescription for any selection above

Thiz choice sets the initial configuration of how the main PSD flazh memory output enable signal iz activated. «
The rezulting configuration takes affect upon power-up or spstem reset and remains in affect until the MCL
optionally overides the settings at run-time using the P50 control register named "hd".

Frogram Space Only => Chooze this to allow the main PSD flash memary aray to drive the MCU data bus
while the PSEN signal is active which places all of the main PSD flazh sectors into "program’* space.

Click OK. Now you will be asked if you want to use the Design Assistant, Extended Design
Assistant, or a example template as shown:

Design Parameters

Chooze the method by which you will enter your design

- \U.se Extended Design Assiztant
™ Ise example template selection

Description:

“r'ou will be led through paint and click choices to create a
deszign that requires simple programmable logic.

Choose Design Assistant. This will help you become familiar with most of the flow of PSDsoft
2000. We'll use the Extended Design Assistant in the second design example.

For any of the three choices, ABEL HDL statements are automatically generated for you behind-

the-scenes based on your point-and-click design entry. These statements include pin, node, and
signal declarations as well as logic equations.

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com 9

TheDesign Assistantthoice does not allow editing accessthese generated ABEL statements,
which is typically not necessary for simpler designs.

It is sometimes necessary to edit or add statements to the generated ABEL file for more
complicated PLD designs that use counters, shift registers, state machines, etc. In these cases, the
Extended Design Assistantshould be chosen, allowing you to add ABEL statements in
designated sections of the generated file that will not be affected by subsequent design iterations
in the point-and-click entry environment. You will learn how to do this in design number two.

In future designs you may choose to use a pre-defxathple template which will make

many of the choices for you based on your selection of MCU and PSD... you just have to tailor
the template to fit your design. But again, there is no ability to edit HDL language statements
Use this mode to get a suggested memory map from Waferscale based on the MCU/MPU and
PSD combination that you have chosen. Note that not all MCU/MPU selections will produce a
choice for a pre-defined example template in which case only two choices will be available: the
Design Assistant and Extended Design assistant.

"At a later point in your design cycle, regardless of which of the three methods you have chosen,
you may optionally “turn on” the ability edit ABEL equations. We'll see how to do this in the
second design example. Note that this is not available for the PSD9XXF and PSD4135G2
devices that have a simple PLD section.

3.2.3 Pin Definitions

Next you are taken to the “Pin Definitions” screen, which allows you to define each PSD pin

function one-by-one on a point-and-click basis. Notice that the PSD pins connecting to the MCU
are already defined for you because their function is fixed. For this first simple design, you need
only to define a few pins that are listed below. In the second design example we will use all of
the signals shown in the schematic of Figure 4.

» Define an active-high chip select output on Port B pin pb0. ChBgtsnal chip
select — Active-HIfrom the CPLD Output section and name it “lcd_e”. Chald.

» Define a combinatorial CPLD output on Port B pin pbl. Chaxs@binatorial from
the CPLD Output section and name it “lcd_rw”. Clis#d.

» Define a combinatorial CPLD output on Port B pin pb2. Chaxs@binatorial from
the CPLD Output section and name it “lcd_a0”. Chald.

» Define an additional JTAG-ISP pin on Port E pin pe4. Chasdicated JTAG —
TSTAT from the Other section. Clickdd. Notice the name “tstat” is automatically
included. Also notice that the signal “_terr” is automatically added to Port E pin pe5.
These two signals work together as a pair to reduce JTAG-ISP programming time by
10% — 15%. See application note 54 on our web site for details.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 10

» Define a pin to accept a battery voltage input for PSD SRAM on Port E pin pe6.
ChooseSRAM standby voltage input from the Other section. Clickdd. The name
“vstby” is automatically included.

Your Pin Definition screen should now look like the screen capture below:

ICuzdire il o ooy 1 pEstine the ol pwin simpa: =| | — %Hhep E- Fin Funokon —
{rlandarnd pne slrendy defaed) Diefine he pn kincion, then dick ke
— Siap I: Balect o pa oa the chip disgiem belre. — AU pcksis batos. Rakis (o siog 1
sl lor B pin.
o 7 adal =T Mo | foes |
&5 r adnl Pl
[™ adaZ E — Pin Fusction
&7 T adnd = — CFLD Ingadt
= r adiod A Logic of add s
+: E: ::__:; ™ Laichad addess
al
— i LLALS LR : P dockad raghmar
FiH r adak gl ke P clocked | sch
all T adold pdl
ald i adnii pdE e CPLD ittt
als T adall pd3 Wi T CemkEnaknsl
E ~ adgid pab E T Rigiskar
o (L e " Cara g s
218 " pe I LLILTL
1! adols pal & T External Gl ia ket - Acthearlo
ﬂ ol pad]
paes ol pas T — Cthar
L T ol pak el 5 WAL) meocle
Ne=s 1 e par 1 WL) miooie wall pas ansble
o ped plti b
r pal g WLVl LT
" ol e az pdes | Dieles |
r pal Bz]
i ped piir — Ghep 3 {Final Siep) —
r pad piE o~ Click: Mueis minral pine srs defnec
 pEg oiE Chack g ot sy bves i CHack prograsd.
myan s Click Cares o sere e upadaie and dose
L]
I o £ pbl pgh view | Hmes | Cancal | Duml_
Icd_rw T phil pal |
H i 1 phi pigE
 phl L L
r pbd pod |
I pbi L |
I phi pgk |
~ ph? paf Al
L

You can view a summary of your pin definitions by clicking Yiew button. When you are
satisfied that you have defined all the pins correctly, clickNeégt>> button to be taken to the
“Page Register Definition” screen as shown next.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 11

3.2.4 Page Register Definition

Since 16-bit MCUs have an abundant number of address lines, memory paging is rarely needed
for these MCUs. However, the PSD page register bits can be used for logic as well. You will
learn how to do this in the second design example.

T="'=l'Il|"\-'l'=r|l'll'-'l'I"|1|'=l'1 | Co o o0 E gt | W08 Lo Bt | 1)

Do e idvachiel PG D0 poige gt B1 el B i
T oo Il el bt g it b B B i s e [l ol il
s bk i B oo e e 2o e v o oy PRy St s !

[ira om -of pekm Feguiim B

Fapfsyg @ M ol Lnr ool Linge e
! T poprg T I
R T e e
s ope T e
L —
mEd [opagag g —
L I—
m [opgmg o I—
B0 g T e |

[sghon
i |l ey mcrmery: gy L) g v e il b erpmmory EI
. e vy sy iy el o . v B P gl E]
[] b s ot s e -3 5
-

= L e B

For this simple design, clidkext >> or click on the “Chip Select Equations” tab.

3.2.5 Chip Select Equations (system memory map)

Now that the PSD pins are defined, you will need to define the system memory map. This is
accomplished by defining all the chip-selects in the system (both internal to the PSD and external
chip-selects).

The three memories inside the PSD are individually selected segment-by-segment when MCU
addresses are presented to the Decode PLD (DPLD). Each internal PSD memory segment has its
own individual chip-select name. For example, the main PSD flash memory has eight individual
chip-selects (one for each sector) named fsO — fs7. See the PSD4235G2 data sheet for details.
Each PSD memory segment must be defined in PSDsoft 2000 if it is to be accessed by the MCU.

We must define the internal PSD memory segment chip-selects: fsO to fs7, csbootO to csboot3,

rsO, and csiop to match the memory map of Figure 5. The external chip-select for the LCD
module, lcd_e, must also be defined, as shown in Figure 5.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 12

Your screen should look like the following:

E Design Assistant

Page Fegister Defintion - Chip Select Eguations \ 70 Logic Equations I User-defined Mode Equations I
For each chip zeledt, select a page number if memony paging iz uged, the active address range, and any Double click any of the zignal names
additional signal qualifiers. Ensure PSD page register bitz have been defined if uzed here. belav to append the signal name ta
Signal qualifiers are izted in bos onnight. Logically AND qualifiers vithin same line uzing ‘& symbol. Create Lh; ULN;%?:{:ENEU;L?:g?ig:ghhem
logic OR by using nest line below, Use 1" symbol for logical MOT. :
tain PSD flash memary will rezide in thiz space at power-up: Data Space Only
Secondary PSD flash memory will reside in thiz space at power-up; Program Space Only
List of chip zelects — Enter system memory information Eligible zignals
(r:0 [N Hex Start Hex End Logical &AWD of Signal Qualifiers — | [Cpsen ~
csiop Murnber Addressz Addrezs [more than one OF)] i I
[E21] _reset
fz1 rj & |BE":IEI & |9FFF & | _wirh
fs2 : _ _wil
|2} Logical OR with nest statement: all
fzd al
fs5 . " " a10
fs6 iy | | all
fs7 Logical OR with nest statement: alz
cshootl all 1
csbootl = al4
czhoot2 e | & | & | als
csboot3 Resultant i — alk
led e ezultant equation 17
A Intemal chip select for 8K, byte SRAM J ald
2 [1FFF hex lacations, max] ald
rzll = ([address »= “hB000] & [address <= “h9FFF]); J_‘ ag
a. -
4 ﬂ -4 J
< Prey | Memwt > ‘ Rezet All | ey | Done | Cancel ‘ Show Eq ‘

Start with the internal chip-select for the PSD SRAM, which is “rs0”. Looking at the memory
map of Figure 5, we see that 8 Kbytes (4 Kwords) of address space needs to be allocated to the
PSD’s internal SRAM. So, we enter the Hex Start Address of 8000 and the Hex End Address of
9FFF as shown above. Notice that you do not have to qualify the rsO chip-select with any MCU
control signals (_rd, wrh, wrl, psen, etc) because that is taken care of in silicon, just type in
the addresses. This is true for all chip-selects of internal PSD memory no MCU control signal
gualifiers are necessary. Also notice that the ‘Page Number’ selection is grayed out since we
defined no page register bits in the previous screen.

Next, define the chip-select for the internal PSD control registers by clicking on “csiop” on the
left side of the screen. Enter its address range as shown:

Lizt af chip zelects — Enter system memary information

1= Page Hex Start Hex End Logical AMD of Signal Qualifiers J
Csiop; Mumnber Address Address [rmore than one OK]

fz0

o |_j p 000 [FOFF g

[

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 13

Continue to define internal PSD memory chip-selects for the main flash memory segments fsO to
fs7, and then secondary flash memory segments csbootO to csboot3. Use Figure 5 as a guide for
address ranges. Again, no signal qualifiers are needed for internal PSD memory chip-selects.
Here are a few examples of what the screen should like for these chip-selects:

Lizt of chip zelects — Enter system memony information

1=l Fage Hesx Start Hex End Logical AMD of Signal Gualifiers J
caio MHumber Address Addrezs [more than one OF]
fsO:
o |_j g (20000 o [6FFFF
Lizt af chip zelects — Enter system memany infarmation
Fange Hew Start Hex End Logical AMD of Signal Qualifiers J
Murnber Addresz Address [rare than one OF]
fsl:
|_j g [10000 g [IFFFF |
Lizt of chip selects — Enter system memory information
1=l FPage Hex Start Hex End Logizal AMD of Signal Qualifiers J
csiop Mumber Addrezs Addrezs [more than one OF)
f=0
e |_j g 70000 o [TFFFF |
fz2
f23 Logical OR with next ztatement;
f=d
f5 —l
fs7: A it | |
w Logical OR with next statement:
Lizt af chip zelects — Enter zpztem rmemany infarmation
1=l Fage Hex Start Hex End Logical AMD of Signal Qualifiers J
caiop M urnber Address Address [miare than one OF]
fs
fs1 |_j & | o [IFFF g |
fz2
fs3 Logical OR with next statement:
fzd
fsh j 8 | 8 | 3 |
csbooto: |FE
: ﬁj@m Logical OR with next statement:
Lizt af chip zelects — Enter spztem memary information
120 FPage Hew Start Hex End Logical AMD of Signal Qualifiers J
csiop Humber Addrezs Address [more than one OF.)
f=0
1 |_j g 000 [TFFE g
fs
f=3 Logizal OR with nest statement;
fzd
fs5 -, L "
55 = | |
fg7 Logical OR with nest statement;
czboot()
czhoot] = | | |
csboot3: cxboot? -1 & & & J

(i R | R T

Waferscale, Inc.0 Fremont, CAO 800-832-6974 00 www.waferscale.com 14

Finally, define the external chip-select for the LCD module, “lcd_e”. This chip-select is
different for two reasons. First, it is an external chip-select that does not activate any memory
element inside the PSD because the signal “lcd_e” is output on a PSD 1I/O pin. And second, this
chip-select requires qualifiers, meaning that this logic signal is true only for a given MCU
address range AND only when one of two other another signals are active.

In this design, “lcd_e” is true only when the MCU presents an address in the range of 06000 to
06001 hexAND when either the P51XA control signal “_wrl” is tru@R when P51XA signal
“_wrh” is true. To create this logic, enter information as shown in the screen below. Since both
signals, “ wrl” and “_wrh”, are active low as they leave the P51XA, the lobi€Al operator

(M) is used when they are specified as qualifiers.

Signal qualifiers may be added by parking the cursor where you want the signal name to go then
just double-click on the signal name in the list of ‘Eligible signals’.

Lizt of chip zelects — Enter system memon information
1=l FPage Hew Start Hex End Logical AMD of Signal Qualifiers j
ciop Mumber Bddrezs Addrezs [more than one OF.)
f=0 =
(o1 rj g [B000 g [B00T g [
fz2
f=3 Logical OR with next statement:
fzd
f55 = CER N
f=G
f=7 Logical OR with nest statement:
czboot(l
czhoot] =
lcd e czhoot? I__I & I b I & I T
- czboot3

W |—Hesultant equation

You can click theView button at any time to see a summary. Once you are satisfied with the
results, click théNext >> button.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 15

3.2.6 1/0 Logic Equations

Now define the two combinatorial output signals “lcd_rw” and “lcd_a0”. You should see the

following screen:

Select zignals in the 'List of zsignals' box and define the eguation by either tpping in 'logic
equation’ box or double clicking the " alid operators’, and 'Eligible signals' box.

= Design Assistant

Page Register Definition | Chip Select Equations YO Logic Equations | User-defined Node Equations |

Diouble click logic operators or signals
below to append test inside the logic
equation baox where the cursar iz located.

List of signalz
— Enter logic equation —%alid operators
led_rw Output enabls Logical operatars: -
led_al [nd ;I I Mot [Complement or [mvert)
led_al Output enable & AMD
aR
$ HOR
% =MOR -
4 ¢ |
iI LlJ — Eligible zignals
— Rezultant equation
led_mw = Gnd; ﬂ B
pdrT
= rd_beay
ﬂ < W -
KN - i
<4 Prev | Mext >3 | Fieset All | Wiew | Dane | Cancel | Show Egq |

The signal “Icd_rw” should be a constant 0 volt output, so highlight the signal “lcd_rw” in the
‘List of signals’ box on the left. Then park your cursor in the ‘Enter logic equation’ box at the
upper left corner. Now scroll down in the ‘Eligible signals’ box until you find the signal “Gnd”.
Double-click on “Gnd” and it will appear in the logic equation box as shown above. This is how
you create equations for each of the I/O signals. You can also type the equations into the box.

Now set the output enable term for the signal “lcd_rw” to always active, or “Vcc” as shown:

Lizt of zignals

led Enter logic equation

ded e Dutput enable
ld_al Voo =
lzd_al Output enable
Next, define the signal “lcd_a0” as shown below:
Lizt of zignals
led_nw E nter logic equation
led e Output enable |_wih ﬂ

led_al Qutput enable

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com

16

To do this, park your cursor in the ‘Enter logic equation’ box, then go to the ‘Valid operators’
box, and double-click on the “I” symbol. Now go to the ‘Eligible signals’ box and double-click
on “_wrh”. Lastly, set the output enable term for “lcd_a0” to “Vcc” just like “lcd_rw”.

As an example of more complex logic, you can implement longer equations by adding signals
and operators as shown in the following generic logic statement:

Lizt of signals

output_B Output enable
aLtpLt_&,
output_g& Output enable

Enter logic equation
|7 [input_A & linput_C] # [input_B & output_a]

Notice that you can include other output signals (feedback) as part of the equation.

There are no ‘User-Defined Nodes’ in this simple design example, soDxdick This starts a
preliminary resource and system check of the information you have entered. Analysis is
performed to check for overlapping memory segments, problems with synthesizing the logic, and
other problems. Any errors encountered will be indicated. An ABEL HDL file is generated.

3.2.7 Design Flow

Once you have clicked dpone you are taken to the ‘Design Flow’ window. Use this window

as your main navigational tool for PSDsoft 2000™. Clicking on individual boxes within the
flow diagram will invoke a process. A box shadowed in red identifies the next process that
needs to be completed. The first three steps have been completed to this point. If you invoke a
process that invalidates other processes downstream, the gray boxes indicate which processes
must be invoked again and the red shadow indicates which process to invoke first.

The design flow should be in the following state:

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 17

3.2.8 Additional PSD Settings

Click the ‘Additional PSD Settings’ box. This is where you may choose to set the security bit to
prevent a device programmer from examining or copying the contents of the PSD. You can also
click through the other sheets on this screen to set the JTAG IEEE 1149.1 USERCODE value
and set sector protection on individual PSD non-volatile memory segments as desired.

3.2.9 Fit Design to Silicon

Click the ‘Fit Design to Silicon’ box. PSDsoft 2000 will input the generated ABEL file and all
other configuration settings to synthesize the logic, creating reduced logic equations and a
fusemap that fits the PSD4235G2 silicon elements. When this process is complete, a report will
pop up that shows the resulting pin assignments and the resulting reduced equations. This is the
“fitter report”, which you can use to document your design.

3.2.10 PSD-Specific C Code Generation

You can take advantage of the provided low-level C code drivers for accessing memory elements
within the PSD by clicking on the ‘Generate C Code Specific to PSD’ box in the design flow
window. ANSI C code functions and headers are generated for you to paste into your C
compiler environment. Simply tailor the code to meet your system needs and compile. C code
generation can be performed anytime after a project is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the
header files and the C source file to be written, and name the C source file. Select the categories
of functions that you would like to include, then cliGenerate Three files will be written to
your specified folder(s):

» <your_specified_name>.cANSI-C source for all of the selected functions

e psd4235¢g2.0 ANSI-C header file to define PSD registers
* map4235g2.0 ANSI-C header file to define locations of system memory
elements.

Notice that you do not have a choice to rename the two generated header files. This is because
those header files are specified by name within the generated C function source file. If you edit
the names of the generated header files, be sure to edit the generated C function source file to
match the new header file names.

The three generated files may now be tailored and integrated into your compiler environment.
The file psd4235g2.h contains a #define statement for each individual C function within the
<your_specified_name>.c file. Edit psd4235g2.h and simply remove the comment delimiters (//)
from the #define statement for each generated C function that you would like to be compiled
with the rest of your C source code.

There are also coded examples available. Click on the ‘Coded Examples’ tab at the top of the C
Code Generation screen. This sheet contains several examples that you may use as a basis fo
building your own C code application. These are complete projects (main, functions, and
headers) targeted toward various MCUs. You may copy these files to some folder to browse

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 18

them for ideas, or cut and paste sections from the examples into your own MCU cross-compiler
environment.

3.2.11 Merge MCU Firmware with PSD

Now that all PSD pins and internal configuration settings have been defined, compiled, and fitted,
PSDsoft 2000™ will create a single object file (.obj) that is a composite of your MCU firmware and
the PSD configuration. FlashLINK™, PSDpro, and third party programmers can use this object file
to program a PSD device. PSDsoft 2000 will create a file called “simpleXA.obj” for this first design
example.

During this merging process, PSDsoft 2000 will input firmware files from your MCU
compiler/linker in S-record or Intel HEX format. It will map the content of these files into the
physical memory segments of the PSD according to the choices you made in the “Chip Select
Equations” screen. This mapping process translates the absolute system addresses inside
specified firmware files into physical internal PSD addresses that are used by a programmer to
program the PSD. This address translation process is transparent. All you need to do is type (or
browse) the file names that were generated from your MCU linker into the appropriate boxes and
PSDsoft 2000 does the rest. You can specify a single file name for more than one PSD chip-
select, or a different file name for each PSD chip-select. It depends on how your MCU linker
has created your firmware file(s). For each PSD chip-select in which you have specified a
firmware file name, PSDsoft 2000 will extract firmware from that file only between the specified
start and stop addresses, and ignore firmware outside of the start and stop addresses.

Click on “Merge MCU Firmware” in the main flow diagram and you will see the following:

Siep 12 MCU Srmsmre placemsenl

5 iy i ool B DL i file b g PED mavmiy g sk Sainall) e o pepreeidy
'-'Twm:dhmh‘:ﬂlhﬂa'wdin ﬂ}nmlm:u.h-r-\.-_.-“-\hllwt Yo lofe |
Foed

Pl precey Fia Pl
4 whmct Bl belect Euisiies Addwm A Tl o
Ugilbed Siop)
b AT E IR IETE =
PO | alg; U B |:|
e L 134 Fal L 51T R
[T T |I"\'-'\-' [II'I | — |
ElaigdiafL o7
Fiz :ﬁf EREERE B [.1--r | Tho— |
L AR E
FE1 |4 f0oa frre | Jo— | 4
Rocosd T apre klade
& lrdad Hisa Pacond ™ blolorda §-Macad r Disci ™ Rakswe

Siep ¥ Meige PED canfiguration and MCL fomsesen
Dk 0¥ o onsls i prognanmng dads fil

= |
;mu|

In the left column are individual PSD memory segment chip-selects (FSO, FS1, and so on). The
next column shows the logic equations for selection of each internal PSD memory segment.
These equations reflect the choices that you made while defining PSD internal chip-select

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 19

equations in an earlier step. In the middle of the screen are hexadecimal start and stop addresses
that PSDsoft 2000 has filled in for you based on your chip-select equations. On the right are
fields to enter (browse) the MCU firmware files.

Select ‘Intel Hex Record’ for ‘Record Type’ as shown. Select ‘Direct’ for ‘Mapping Mode’. This
maps the MCU addresses residing inside the Hex file directly to the corresponding addresses
within the range of the file start and stop addresses that are typed into the boxes. ‘Direct’ is the
most typical setting. ‘Relative’ mode will place contents of the specified Hex file starting at the
beginning of a physical PSD memory segment, in other words, no offset from the base of the
physical memory segment. ‘Relative’ is used only for very unique applications.

Scroll all the way down to the bottom to get to the secondary flash memory. Now, click
Browse...for csbootO and select the firmware file, PSDsoft\examples\boot_32K.hex. Repeat for
csbootl, csboot2, and csboot3 specifying this same file name for each. Once you have filled in
the file names, your screen should look like the one below:

Blep 1 WO Ainmsse glaoemeat Scron to the
By vowme ol BT lirwes e b s P00 sty ittt otk Sl iy pte ol s ratea
ik oty e [ik P B B A ke 0 D) o il Wy bt o Mosa i | bottom to get to
Lt the secondary
Ugrap Fin Fin
Salnct Wewdy Gl Egaskn | dddmin Adchuin Fia Hese flash.
s i raw] S el
Ipdn L 1951w & 1T 2
[EB00T] g islGa WIS EIsl 4L] T Pkl L HILE
R e | e

Ipdn b W55 e k61T

[1 T R T TP O |-"3'3' |§-‘-‘F F-.r--._r._r.e RHFESY | | o |

Tpdn & laiBdiefd b laiT 4

CEBO0TY LyiEa iats b aid b ol |4'm |-.---l- rc'l-'d'-al"-t EMFLEE, | s |
ipgnk widdissd Elaifa
CEROOTY balEL 1S b wld bulk |=:m |.'7-1: P EEHFLE R —
Fhscoad T g Huapqang binde

I e HecAeoardl 1 Bolooks & Plecrd ol (] T Helghan
Siep 2! Werge PED canfigarstion and WO fimmsses
Dl 0K iz cosadss 5 prograarmmnsg dais e IE |

el |

This specification places firmware in PSD secondary flash memory segments csbootO through
csboot3. PSDsoft 2000 will extract any firmware that lies inside the file boot_32K.hex between
MCU addresses 0000 and 7FFF and place it in appropriate PSD memory segmen@KGfick
generate the composite object file, simpleXA.obj.

Note: the file boot_32K.hex does not contain P51XA firmware. It is used to illustrate the
firmware merging process. Boot_32K.hex has a data pattern for each of the four segments of
secondary PSD flash memory. CsbootO will receive AA hex, csbootl receives BB hex, csboot2
receives CC hex, and cshoot3 receives DD hex. The point is that although only one file nhame
was specified for four different PSD memory segments, PSDsoft 2000 extracted the proper data
for each segment based on the specified file start and stop addresses and the addresses contained
inside the file boot_32K.hex. You may examine the contents of the file boot_32K.hex if you wish

to better understand.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 20

3.2.12 Programming the PSD

The file simpleXA.obj can be programmed into the PSD by one of three ways:
¢ The Waferscale FlashLINK JTAG cable, which connects to the PC parallel port.
* The Waferscale PSDpro device programmer, which also uses the PC parallel port.
» Third-party programmers, from Stag, BP Micro, and others. See our website at
www.waferscale.com for list (PSD Products, Programming, then Programmers).

3.2.12.1Programming with FlashLINK ™

Connect the FlashLINK JTAG-ISP cable to your PC parallel port. Click the ‘JTAG-ISP’ box

in the design flow window. You will be asked how many devices are in your JTAG chain. For
this example, select ‘Only One’. You would only select ‘More than One’ if you had more than
one ISP device in your JTAG chain (even non-Waferscale JTAG devices may be included in the
chain). You may choose to disable this question that appears each time you enter the JTAG
screen, and then turn it back on later using the ‘Preferences’ menu choice from the ‘Project’
pull-down menuClick OK after your selection, you should see the following screen:

JTAG-ISP Operations - Single Device
—atep 1: Select Programming file and PSD

Select folder and pragramming file: Select device:

IE:\F'Sdsnft\my_proieu:t\simple:da.obi Browse. .. | IF'SD4235I32 vl

—atep 2: Specify JTAG-ISP operation and conditions

Select operation; Select PSD region: Select # of JTAG pitig to uge on circuit board: Other conditions:
IF'n:ugram j I."-‘l.ll j IE pirg - tdi tdo bok s kstat,_tern j F'n:uperties...l

Click here ta perform specified JTAGASP operation »> Execute

—Step 3: Save or retrieve JTAG-ISP setup
Specify folder and filename ta save the setup of this JTAGISP session or retrieve a previous session. Save

i

Select folder and file: || Browse...

[LogMode - Click box ta record session infomation in the log file * plg.

=

[

Hiw' Setup | HesetTargetl Cloze |

This window enables you to perform JTAG-ISP operations and also offers a loop back test for
your FlashLINK™ cable. If this is your first use, test your FlashLNKable and PC parallel
port by clicking theHW Setup button, then clickoopTest button and follow the directions.

Now let’s define our JTAG-ISP environment. PSDsoft 2000 should have filled in the folder and
filename of the object file to program, the PSD device, and the JTAG-ISP operation, as shown in
the screen above in ‘Step 1'. For this design example, we have chosen to use all six JTAG-ISP
pins (instead of four) so six pins is automatically filled in. Using all six pins reduces
programming time by 10%-15%. Refer to Application Note 54 for details.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 21

To begin programming, connect the JTAG cable to the target system, power-up the target
system, and clickExecuteon the JTAG screen in ‘Step 2. The Log window at the bottom of the
JTAG screen shows the progress. You can choose to save all log messages to a file by clicking
the ‘Log Mode’ box.

There are optional choices available when Bweperties... button is clicked. One choice
includes setting the state of all non-JTAG PSD 1/O pins during JTAG-ISP operations (make them
inputs or outputs). The default state of all non-JTAG PSD I/O pins is “input”, which is fine for
this design example. The other choice allows you to specify an IEEE 1149.1 USERCODE value
to compare before any JTAG-ISP operation starts. This is typically used in a manufacturing
environment. See the on-screen description for details.

After JTAG-ISP operations have completed, you can save the JTAG setup for this programming
session to a file for later use. To do so, click onShaeebutton in ‘Step 3. To restore the setup
of a previous session, click tBsowse... button in ‘Step 3'.

3.2.12.2Programming with PSDpro

Connect the PSDpro device programmer to your PC parallel port per the installation instructions.
Click on the ‘Waferscale Conventional Programmers’ box in the design flow window. You will
see this:

Eonventional Programming : simplexa.obj - PSDpro

P5D4235G2 | Displayed region: Main Flash [D0000 - 7FFFF] | F50: 00000 simplexa.obj
Direct Address Hexadecimal display of programming data file ASCll Representation
ooooo FA |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF JFF 2] oo
00010 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF [] oo
00020 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | oo
00030 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | oo
00040 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF |[FF | | «-ccccooooooo..
00050 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | oo
00060 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | oo
00070 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | oo
0oog0 FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | «ccococoiooo...
HIE] FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF | | «ccocoooiooo...
000AD FF |FF |FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF [FF || =cccceoccocecaa.

If this is the first use of the PSDpro, you'll need to designate the PSDpro as the device connected to
your parallel port. To do this, click th®ET H icon button at the top of the “Conventional
Programming” screen and choose the PSDpro. Then click ¢h TS T icon to perform a test of

the PSDpro and the PC parallel port. After testing, place a PSD4235G2 into the socket of the
PSDpro and click on therogram icon. (The simpleXA.obj file is automatically loaded when this
process is invoked.) The messaging of PSDsoft will inform you when programming is complete.

This window is also helpful even if you do not have a PSDpro device programmer. Use this

window to see where the ‘Merge MCU Firmware’ utility has placed MCU firmware within
physical memory of the PSD. For this design example, click on the secondary PSD flash

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 22

memory icon “Fb” in the tool bar. You can see the AA hex pattern in csbootO from the file
boot_32K.hex. Scroll down to the beginning of csbootl (address 82000) and see the BB hex
pattern, and so on. This is useful when you want to examine your own firmware. To see how all
of the MCU absolute addresses translated into direct physical PSD memory addresses, view the
report that PSDsoft generates under “Reports” from the main toolbar, then select “Address
Translation Report.” Within the report, the Start and Stop addresses are the absolute MCU
system addresses that you have specified. The addresses shown in square brackets in the
reportare the direct physical addresses used by a device programmer to access the memory
elements of the PSD in a linear fashion (a special device programming mode that the MCU
cannot access).

4 Second Design Example — ISP, Full IAP & CPLD Logic Elements

This second design example builds upon the first by adding true IAP capability. You will see

how to execute from secondary PSD flash memory in program space while programming the
main PSD flash memory in data space, then move main PSD flash to program space for
execution. We will also create some complex logic in the CPLD requiring use of the Extended

Design Assistant.

4.1 Memory Map

Figures 6 and 7 represent the system memory maps for this design.

Figure 6 represents the system memory map at power-up and after reset. This map is also valid
during IAP. Notice that all of the main PSD flash memory is initially in Data space so that the
P51XA can write to it during IAP. Also notice that all of the secondary PSD flash memory is
initially in Program space so the P51XA can execute code from it during IAP. The choice for this
initial placement of memory in Program or Data space was made within PSDsoft Express
(‘Define MCU and PSD’ in flow diagram).

Figure 7 represents the system memory map after IAP is complete. All of main PSD flash
memory has moved to Program space. The PSD has a control register (named the VM register)
that allows the P51XA to change the definition of Program space and Data space at run-time for
IAP purposes. This VM register is accessed at an address offset from the base address, “csiop”.

Sequence of events for IAP:

» Fig 6 - at power on or after reset, the P51XA boots from secondary PSD flash memory

* Fig 6 — P51XA runs a checksum of the main PSD flash memory in Data space

* Fig 6 - If needed, P51XA programs and verifies main PSD flash in Data space via the UART
* Fig 6 — P51XA writes 06 hex to the VM register to place main PSD flash into Program space
* Fig 7 — main flash has moved to program space as a result of writing 06 hex to VM register
» Fig 7 — P51XA can now execute application code from either main or secondary PSD flash

To accomplish this IAP function, no chip-select equations have to change from the first simple
design example. Only the VM register must be accessed at run time as described above.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 23

For MCUs/MPUs without Harvard architecture (Harvard: separate program and data address
spaces) the VM register is not needed since there is only one address space for both code and
data. IAP is much simpler for these MCUs/MPUSs.

P51XA | P51XA
Program Space . Data Space
FFFEl 1 | 150 8FFFF
l ' 64K bytes PSD 64K bytes
| | | Main Flash 80000
| | X fs7 7FFFF
| . 64K bytes PSD 64K bytes
I | Main Flash 70000
I | ! is6 6FFFF
| | | 64K bytes PSD 64K bytes
| I . Main Flash 60000
| I | fs5 5FFFF
64K bytes PSD 64K bytes
I | X Main Flash 50000
| | | fs4 4FFFF
I nothing mapped | . 64K bytes PSD 64K bytes
| | i Main Flash 40000
| | . fs3 3FFFF
. 64K bytes PSD 64K bytes
| | | Main Flash 30000
| | . fs2 2FFFF
| | | 64K bytes PSD 64K bytes
. Main Flash 20000
| I | fs1 1FFFF
| | 64K bytes PSD 64K bytes
| | . Main Flash 10000
| OFFFF
| | nothing mapped
| I . 0A000
06000 750, 8K bytes PSD SRAM | 08000 - 09FFF
/:[5 /if]df;,ﬁf':’:d 06000 - 07F FF [c5b0ot3 , 8KB PSD 2nd Flash I Csiop, PSD cnlregs] 07000 - 070FF 64K bytes
ﬁsre g §TAG-/SP 04000 - 05FFF Jcsboot2 , 88 PSD 2nd Flash . Icd_e, ext LCD chip sel | 06000 - 06001
4 ¢ | 02000 - 03FFF Jcsbootl , 8KB PSD 2nd Flash nothing mapped 00400 - 05FFF
or conventiona 00000 - 01F FF [csboot0 . 8K PSD 2nd Flash | PSIXAG3 RegalSRAN] 00000 - 003FF

programmer tool.

|
Figure 6 — Memory Map at Boot-Up or Reset and During IAP.
PSD VM register initially 12 hex, Main PSD flash in Data space

P51XA | P51XA
Program Space . Data Space
8FFFF ts0 I | -0 - | erFee
64K bytes PSD . | | 64K bytes
80000 Main Flash '
7FFFF ts7 | | |
64K bytes PSD . | | 64K bytes
70000 Main Flash | | I
6FFFF fs6 . | |
64K bytes PSD | I 64K bytes
60000 Main Flash , |
5FFFF fs5 . I |
64K bytes PSD I | | 64K bytes
50000 Main Flash ! | |
4FFFF fs4 I |
nothing mapped
64K bytes PSD : I g mapp 64K bytes
40000 Main Flash | |
3FFFF fs3 I | |
64K bytes PSD ' I | 64K bytes
30000 Main Flash |
2FFFF fs2 ! | l
64K bytes PSD | | | 64K bytes
20000 Main Flash . I |
1FFFF fs1 | | |
64K bytes PSD | 64K bytes
10000 Main Flash : |
OFFFF |
I I I I
nothing mapped | ' | 0A000
08000 | 150, 8K byles PSD SRAM | 08000 - 09FFF 54K bytes
06000 - 07FFF [csboot3 , KB PSD 2nd Flash Csiop, PSD cnllregs | 07000 - 070FF 4
04000 - 05FFF cshoot2 , 8KB PSD 2nd Flash . Tcd_e, ext LCD chip sel | 06000 - 06001
02000 - 03FFF |csbootl, 8KB PSD 2nd Flash nothing mapped 00400 - 05FFF
00000 - 01FFF |csboot0 , 6KB PSD 2nd Flash | P51XA-G3 Regs/SRAM | 00000 - 003FF

Figure 7 — Memory Map just after P51 XA writes 06 hex to PSD VM register .
IAP complete, main PSD flash moves to Program space

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 24

Your system design may require that you operate application code completely from main PSD
flash memory after IAP is complete. This means swapping the secondary PSD flash memory
(containing IAP loader code) out of Program space, and replacing it with main PSD flash

memory (containing application code). This is explained in the third design example.

4.2 PSDsoft Express Design Entry

We are finished with IAP issues, now let's get started on the advanced CPLD logic design.
Invoke PSDsoft 2000, open the project “simpleXA” from the first design example (if not already
open). Pull down ‘Project’ from the menu at the top of the screen, and select ‘Save As’. For this
second design example, save the first project under the new name “logicXA”.

For this second design, “logicXA” we want to use the Extended Design Assistant environment so
go to the ‘Project’ menu pull down at the top of the screen and select ‘Preference’. Then enable
ABEL editing by clicking the box as shown, thexK.

F' Erabie BN, St
F' Erabis S50 raren b by s

% F [rabds AU Bqesion) gding capabi;

I F ok Seqgehad devws JTARA R v etiaijs

] o |

You should see the full flow diagram as shown below. This flow also appears if ‘Extended
Design Assistant’ is chosen for a new design. Note that the ability to edit the ABEL file is not
available for PSD9XXF or PSD4135G devices, both of which have simple PLDs (no registers).

Additional box

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 25

For this second design example, we’ll implement the following logic elements to illustrate PSD
functionality:

* 4-state state machine with comparator feature.

* Eight debounced inputs used for state machine input.

» 4-bit reloadable down-counter with initial value set by the MCU.

» Simple clock divider circuit.

» 20 general purpose I/O pins controlled by MCU firmware.

» PSD page register.

* Miscellaneous combinatorial logic.

The general tactic will be to use the Graphic User Interface (GUI) of the Designs Assistant as
much as possible to create these logic functions before we have to manually edit the generated
ABEL HDL file. You will see that the GUI creates all of the necessary pin and signal declaration
statements as well as some of the simple logic equations. After this point, we will open the
ABEL file and add more ABEL statements to implement the state machine and down-counter.

4.2.1 Pin Definitions

To achieve this, let's go back and define the remaining pin functions from the schematic of
Figure 4. Click on the ‘Define PSD Pin/Node Function’ box and add the following signals:
» Define eight inputs on Port A that are clocked (sampled) as they enter the PSD.
ChooseProduct Term (PT) clocked register from the CPLD Input section, and
name them “strobed_in_0" through “strobed_in_7". In silicon, these are IMCs.

» Define a combinatorial CPLD output on Port B pin pb5. Ch&smbinatorial from
the CPLD Output section and name it “zero”. Cliadd.

» Define a logic input to the CPLD on Port B pin pb6. Chdosgic or addressfrom
the CPLD Input section name it “sys_ready”. Clhgdd.

» Define a combinatorial CPLD output on Port B pin pb7. Ch&smbinatorial from
the CPLD Output section and name it “sequence_OK”. Glabd.

» Define eight MCU general purpose 1/O signals on Port C. The MCU can set these
pins to logic high or low as outputs, or read the pins as inputs all through firmware at
runtime. To set this up, choo$4CUI/O Mode from the Other section and name
them “mcuio_pc0” through “mcuio_pc7”.

» Define four MCU general purpose 1/O signals on Port F. ChétS&I/O Mode
from the Other section and name them “mcuio_pf4” through “mcuio_pf7”.

» Define eight MCU general purpose I/O signals on Port G. Chbti3gl/O Mode
from the Other section and name them “mcuio_pg0” through “mcuio_pg7”.

» Define a common PSD clock signal input on Port D pin pd1l. ChGosemon clock
input, CLKIN in the Other section.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 26

Your screen should look like this:

mcuio_pcl

mcuio_pcl

meouio_pc?

mcuio_pcl

mcuio_pcd

mcuio_pch

mcuio_pch

mcuio_pc?

ale

clkin

_with

tms

tck

ti

tdo

tetat

_terr

with

al

al

ad

a3

mecuio_pfd

mcuio_pfs

meuio_pte

mecuio_pf?

mcuio_pgl

mecuio_pgl

mcuio_pge

mcuio_pg3

mcuio_pgd

mcuio_pgh

mcuio_pgh

=3 Pin Definitions

Define each pin by repeating the following steps:

{standard pins already defined)

— Step 1: Select a pin on the chip diagram below. —
ad " adiol pcl ©
ab " adiol pcl &
ab ¢ adio? pce O
al " adio3 pc3
ab " adiod pcd ©
ad " adiob pch
all = adiob pch
all " adio? pc?
ald = adiod pdd
all ¢ adiod pdl
ald ¢ adioll p2 &
alh = adioll pd3 ©
alb " adiol2 pel &
al? ¢ adiol3 pel
alf " adiold pee &
ald ¢ adiolh ped
_wetl " cntld ped

_psen " cntl2 peh
_rd " cntll peb
_reset ~ _reset pef
strobed_in_0 " pal pfl
strobed_in_1 = pal pfl
strobed_in_2 " pag pf2
strabed_in_3 pad pi3
strobed_in_4 " pad pfd &=
strobed_in_5 pab pfs
strobed_in_B " pah pff
strobed_in_7 - pa? pf?
lcd_e " phi pol
led_rw = phl pgl ©
lcd_al C ph2 pge

- ph3 pgd

= phd pod

ZEID " phb poh
sys_read " phk pgh
sequence_ok - ph? pof O

mcuio_pg?

Click Next>>.

4.2.2 Page Register

M= E3
|| — Step 2: Pin Function —
Define the pin functian, then click the
Add/Update buttan. Feturnta step 1
repeat for next pin.

— Fin Function
— CPLD Input

" Logic or address

— CPLD Output
" Combinatarial
" External chip select - Active-Hi
" External chip select - Active-Lo

— Other
@« MCU IO mode
C MCU MO mode with pin enakle
" Latched address out

Update | Delete

— Step 3 (Final Step) —

Click Next>> after all pins are defined.
Click iew at any time to check progress.
Click Done to sawe the update and close.

RE | Next>>| Cancel| Dione |

L« |

This brings you to the PSD page register definition screen. Although we will not need to page
memory since this MCU has plenty of address lines, we will use one of the page register bits for
general logic. In this case, we define one page register bit as logic and name it “begin”. This will
be used in our state machine to allow it to start cycling. Using page register bits saves the use of
OMCs.All page register bits are available as CPLD inputs. Note that the page register bits are
cleared upon power-up and subsequent resets.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 00 www.waferscale.com 27

Define the “begin” bit as follows, then Clidkext >>.

Foge Regesier Deinrion | Chip Select Equesions | 170 Logic Eqentions

Oiars hove mdevadeal PED page. regused bete wvalll e cined
Fach b ncddesd bor ‘panpend’ i coadss e BICL) aicieen wangs Siaal meths pagell
Fasch b ol b Toes" C (s il ek i it e s P00 (5 owlt sl i

Dsiwrs was ol pags repuia b
PamReghl Tuse s Mg o Lot Sigredd
L I pageg [g
L I pagrg [kegpc I
o I psgrg [kg l—
ol I pagrg [kg I
[e I pagrg ¥ kg |bsen
[e T g T obge |—
ol I pagrg [e I
Pl I psgmg [kg |—
[imopdeon

T, 1w o it o defre ke pega. Hvew by b e pager ard
12 on Sebecd sngugh bitr la o e rasber e pager. Sl

=

Head o1 | nmu| Wit | Diona | I_'.a.'\nall

thﬂlrmmUnmﬁl:M‘mm él

4.2.3 1/0 Logic Equations

There are no changes needed to the memory map (chip-selects) from the first design as all IAP
enhancements can be accomplished by using the VM register in this caséNeXlick> to skip
the ‘Chip Select Equations’ screen. You should see the ‘I/O Logic Equations’ screen as follows:

Page Register Definition | Chip Select Equations /0 Logic Equations | User-defined Mode Egquations |
Select signals in the 'Lizt of signals’ box and define the equation by either typing i logic Double click logic operatars or zignals
equation' box or double clicking the " alid operators', and 'Eligible signals' box. below to append text inzide the logic
equation box where the curzor iz located.
Ligt of signals
strobed in 0 PT clock — Enter logic equation —alid operators
strobed_in_1 PT clock - Logical operatars: -
. | - qical op
strobed_in_2 PT clock telkin [1 Mot [Complement ar [nvert]
strobed_in_3 PT clock e AND
strobed_in_4 PT clock # oR
strobed_in_5 PT clock k3 ®OR
strobed_in_E PT clock 13 =MOR
strobed in 7 PT clock _ILI
led_na 1 k
led_nw Output enable
led_al - - .
led_al Output enable ll » - Eligible signals
2810 _p3en -
zern Output enable ~ Resultant equation _rd
sequence_ok - - Teset
zequence_ok Output enable shrobed_in_0.0d = lclkin; ;l :wrh
_wirl
all
- al
I—I 10
Fl I I _,I ﬂ r ‘?.1 q LI
<< Prey Next 5 Reset Al | Wiew | {hione Cancel | Show Eq |

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 28

Notice the eight strobed inputs. These are Input Micro-Cells (IMCs), which offer a flip-flop on
each of these input pins. For this example, we will define the clock to strobe these IMCs on the
opposite edge of the state-machine clock. This will guarantee that a stable value is presented to
the state-machine. Do this by parking the cursor in the ‘Enter logic equation’ box, double-click
the “I” symbol in the ‘Valid operators’ box, then double-click “clkin”. It should look like the
figure above. Repeat this for all eight inputs.

The signals “Ilcd_rw” and “lcd_a0” should already be defined from the first design. The logic for
the signals “zero” and “ and “sequence_OK” will be defined when we type in logic while
editing the generated ABEL HDL file, so leave them blank. However, define their output enable
signals so they are always on by assigning “Vcc”. That's all we need to do sNe&ktk>.

4.2.4 User-defined Node Equations

In this final screen of the Design Assistant, we define internal logic nodes, both combinatorial
and registered. Your screen should look like this:

3 Design Assistant
Page Register Definition I Chip Select Equations I IO Logic Equations User-defined MNode Equations |
Define an internal node, then enter its logic egquation and associated terms (clock, presst, Double click logic operatars or sighals
clear, feedback, etc.) below to append text inside the logic
equation box where the curzor iz located.
List of signals
— Enter logic equation —Walid operator
d Logical operators: .
! Mat [Complement ar Invert)
& AND
OR
3 *OR
1% #MOR -
s _>l_I
lI v - Eligible signals
_pzen -
— Resultant equation _d
reset
;I _wrh
wirl
all
. = 8
310
4 j ll e -11 LI
Def Mode... << Prey | Resst Al | Wigw | TDone I Cancel | Show Eq |

Let’s establish all of the internal nodes used for this second design. They are:
» Two register nodes for a 4-state state-machine ... state_bit 0 and state_bit_1
* One register node for a simple clock divider half_clkin
* Four register nodes for a down-counter ... down_countO to down_count3
» Four register nodes to pre-load the down-counter ... init_countO to init_count3
* One combinatorial node used as an intermediate node for down-counter ... term_count

Each internal node, either combinatorial or registered, will consume one Output MicroCell
(OMC).

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 29

First we’'ll define two registers to implement a 4-state state machine. ClidkfoNode...Enter
the name “state_bit_0” and designate it as a register as shown here:

User-defined Mode E3
Create, update or delete a node definition.
Mame: Istale_bit_ﬂ j
Internal Maode

= Caombinatarial
Add

Delete

[Ee |
[mem |

Dane

Now click Add . Do the same for state_bit_1. You should have the following entries in the ‘List
of Signals’ box.

Lizt of zignalz

ztate hit 0 — Enter logic equation——
state_bit_0 Clock
state_hit_0 Feset
state_hit_0 Set
state_hit_1
ztate_bit_1 Clock,
state_bit_1 Reset
ztate_hit_1 Set

You can see that for each register node that is included, its input, clock, reset, and preset values
are automatically added to the list. Equations can be specified for all of these elements. Figure 8
illustrates the relationship between a registered node and its signal names for this example.

state_bit_0 Set

. PRE
state_bit 0 — D Q—

state_bit_0 Clock — CLR

state_bit_0 Reset

Figure 8 — Internal Register Node and Associated Signal Names

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 30

Continue to add nodes. Enter the following node names and node types, @id&idter each:

down_countO ... register
down_countl ... register
down_count2 ... register
down_count3 ... register

init_countO ... register
init_countl ... register
init_count2 ... register
inti_count3 ... register
term_count ... combinatorial

Next we will specify equations for as many of these nodes as we can using the Design Assistant
GUI. Afterwards, we’ll manually edit the generated ABEL statements to finish the logic.

Let’s start with the state machine nodes. We won'’t specify logic for the node inputs using the
GUI because that will be done when the state machine statements are added to the ABEL file. So

leave it blank as shown here (same for state_bit_1):

Lizt of signals

fztate bt [
gtate_hit_0 Clock,
gtate_bit_0 Reset
gtate_hit_0 Set

Enter logic equation

| +—

However, let’s assign the clock for each state machine node as “clkin”:

Lizt of zignals

state bt 0 - Enter logic equation——
state_bit 0 Clock,
ztate_hit_0 Feset
state_hit_0 Set

clkin

Assign the reset for each state machine node as “!_reset”:

Lizt of signalz

state_hit_0 - E nter logic equation—
state bit 0 Clock
febate it [Hesel
gtate_hit_ 0 Set

|_reset

Assign the preset for each state machine node to be “Gnd”

Lizt of zignalz

state_hit_(0 - Enter logic: equation

ztate_bit_0 Clock, Gnd
state bit 0 Feset n
iztate bit [Set

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com

= | eaveblank

31

Now lets implement the logic for the simple clock divider circuit shown in Figure 9.

Gnd
half_clkin 5 PRE _
Q 1/2 freq of clkin
clkin — CLR
Gnd

Figure 9 — Simple Clock Divider

To do this, make these logic assignments for the registered node, “half_clkin”:
* half_clkin Ihalf_clkin
« half_clkin Clock clkin
* half_clkin Reset Gnd
» half_clkin Set Gnd

Moving to the down-counter, let's implement this simple 4-bit auto-reload down-counter, shown
in Figure 10. It will be clocked by “half_clkin” and its output “zero” will indicate when the count
has reached zero, at which time the counter will automatically reload the initial value and count
down again. The MCU will load an initial 4-bit value just once (during a startup initialization
routine) and the counter will automatically reload this value as needed. The MCU loads the count
by writing to four OMCs that we have labeled “init_count0” through “init_count3”. The MCU

just has to write to the appropriate address offset inside PSD control register space, “csiop” to
load the OMCs. See the data sheet for details on control register offsets and functions.

MCU data bus

(initial count)
/TN
MCU writes to OMCs in PSD D C B A

control register space (csiop) —» LOAD

to load inital count 4-bit auto- reloading

down-counter
Q, Q¢ Qp Q,

oy ooy

Figure 10 — 4-bit auto-reloading down-counter

term_count —| > ZERO

half_clkin —

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 32

Lets make assignments for the clock, reset, and preset using the Design Assistant GUI, but leave
each node input equation blank (assignment will be made later when editing ABEL file). The
down-counter will be clocked with the divided clock of Figure 9. So make these assignments for
the register nodes: down_count0O, down_countl, down_count2, and down_count3.

e down_countx <blank>
e down_countx Clock half clkin
e down_countx Reset ! reset
e down_countx Set Gnd

Next, make assignments for the four register nodes which hold the initial count of the down-
counter. Again, no equation will be assigned to the node inputs (this happens when editing
ABEL file). Make the following assignments for the register nodes init_countO0, init_countl,
init_count2, and init_count3.

* init_countx <blank>
* init_countx Clock Gnd
* init_countx Reset ! reset

* inti_countx Set Gnd

The clock and preset inputs are grounded because we do not want any logic overriding what the
MCU has loaded into these registers.

And finally, the combinatorial node, “term_count” needs no equation assigned from Design
Assistant GUI because it will be defined by adding statements to the ABEL file later. Leave it
blank.

Click Doneand you will exit the Design Assistant. At this time, an ABEL HDL file is generated
and preliminary checks are performed.

4.2.5 Editing the Generated ABEL HDL File

Click the box ‘Edit/Add Logic Statements’. You will see two windows pop up.

The HDL Assistant window is there for your easy reference. You may browse through it to find
ABEL language examples for various declarations and logic functions. Simply cut and paste the
desired statements into the other window that has popped up, the PSDabel Design Entry window.
Note that you may turn off the HDL Assistant feature by pulling down ‘Preference’ from the top
menu and un-checking the appropriate box.

The PSDabel Design Entry window is a text editor for the generated ABEL file. Be careful to
type only within the areas designated as “preserved” areas. If you type outside of these preserved
areas, you will loose those statements next time PSDsoft generates the ABEL file again after a
design iteration in the Design Assistant GUI.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 33

There are two “preserved” areas, one for declarations and another for logic equations denoted by
the following:

/I Begin user preserved declarations (not affected by iterations of DA usage)

Type your declaration statements here

/I End user preserved declarations (not affected by iterations of DA usage)

/I Begin user preserved equations (not affected by iterations of DA usage)

Type your logic equation statements here

/I End user preserved equations (not affected by iterations of DA usage)

For this example design, type in the following declarations:

/I Begin user preserved declarations (not affected by iterations of DA usage)

WSIPSD PROPERTY 'DataBus_OMC D[7:4]:down_count[3:0];
/I This PROPERTY statement forces the alignment of
/I down_count bits [3..0] to the MCU data bus bit positions [7..4].
/I'If this WSIPSD PROPERTY statement was not present, then PSDsoft
// would pick random MCU bit positions. The WSIPSD PROPERTY is needed
/I only if the MCU will read or write to MicroCells and only if a
/I particular MCU data bus position is required by the designer.

WSIPSD PROPERTY 'DataBus_OMC D[3:0]:init_count[3:0]";
/I This statement forces the alignment of
/['init_count bits [3..0] to the MCU data bus bit positions [3..0].

DCOUNT = [down_count3..down_countO]; // 4-bit down counter
INIT = [init_count3..init_count0]; // 4-bit initial count from MCU

STINPUTS = [strobed_in_7..strobed_in_0];
/I 8 inputs that are stobed (sampled) on the way into
/I the PSD (debounced). These inputs are clocked on the
I/l opposite edge of the state machine clock (!clkin) so
/l they are stable for each state machine transition.

STATE_MACHINE = [state_bit_1..state_bit_0];
/I 2 bits for 4-state state machine. Clocked by
/I common PSD clock input (clkin).

/I End user preserved declarations (not affected by iterations of DA usage)

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 34

Now type in the following equations for the down-counter and the state-machine:

/I Begin user preserved equations (not affected by iterations of DA usage)

[I**** 4-bit down counter. accepts initial value from mcu, auto reloads ****

term_count = (DCOUNT.fb == 0); // true when count reaches zero
when (term_count) then DCOUNT := INIT;

// automatically reload counter with initial

/I value after a count of zero is reached

zero =term_count; // Assign terminal count to PSD output pin

/I**** simple state machine, looks for predefined sequence
I of values appearing on the 8 strobed inputs *****

state_diagram STATE_MACHINE;

state O:
sequence_ok = 0; /I indicate sequence not found yet
if (begin == 1) & (sys_ready == 1)) then 1 else 0;
/ stay in this state if 'begin’
/ signal is zero or system is
/I not ready
state 1:
if (STINPUTS == ~hAB) then 2 else 1;
/I stay in this state until hex pattern AB is found

state 2:
if (STINPUTS == ~hCD) then 3 else 2;
/I stay in this state until hex pattern CD is found

state 3:
sequence_ok = 1;
/I indicate correct sequence was found, then start over
goto 0;

/I End user preserved equations (not affected by iterations of DA usage)

Here is the representative state diagram of the state-machine:

begin =1
&

State 0,
sequence_OK =0

sys_ready = 1

State 3,
sequence_OK =1

if inputs = 'AB" hex

ifinputs = 'CD" hex

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com

35

4.2.6 Finishing the design

Click the ‘Fit Design to Silicon’ box. After a successful fit, click the ‘Merge MCU Firmware’
box, and follow the same procedure used in the first design. No firmware filename needs to be
designated for the main PSD flash segments (fsO — fs7) since they will be programmed by the
P51XA during IAP. Click OK in the merging screen to create a composite object file,
logicXA.obj, for programming. You are now ready to program the PSD as described in section
3.2.12.

5 Third Design Example — ISP and Advanced IAP

The third design example adds enhanced IAP features. The physical connections between the
MCU and PSD4235G2 do not change, but chip-selects (memory map) and PSD page register
definitions do change. We will not change any of the CPLD logic in this design.

This enhanced design derives the most utility out of the PSD architecture by providing a means
to replace the secondary PSD flash memory with a segment of main PSDflash memory
(swapping) after IAP is complete. These benefits result:

* |AP bootloader code in secondary PSD flash can be updated in the field while executing
from main PSD flash memory.

» The entire application can be executed from main flash after IAP is complete.

« The system software designer can make use of two sets of MCU interrupt
vectors/routines and low-level code: one set during IAP (contained in secondary flash)
and a different set after IAP (contained in main flash).

* The secondary PSD flash memory can be split in half. One half used for boot loader code
during IAP and the other half used as general data storage after IAP.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 36

5.1 Memory Map

The memory map for this design is a sequence of four steps shown in Figures 11 through 14.
Figure 11 is the memory map at system power-on or system reset. The swap bit and unlock bit
are defined as two of the eight PSD page register bits. Here’s the sequence after power-up or
reset:

* Fig 11: P51XA boots from secondary flash memory (csbootO/csbootl) at address 0000, the
VM register contains the initial value of 12 hex from the point-and-click settings in PSDsoft.

* Fig 11: P51XA performs a checksum of main flash memory (fs0..fs7) in Data space

* Fig 11: P51XA downloads to main flash from host computer if needed and validate contents

* Fig 11: P51XA writes 06 hex to PSD VM register

* Fig 12: Main Flash memory has moved to Program space because of 06 hex in VM register

* Fig 12: P51XA sets swap bit to logic one (writes to PSD page register)

* Fig 13: Secondary flash memory (csboot0O/sbootl) has moved out of the MCU address range
0000 to 3FFF and main flash memory (fs0) has moved into its place because of the swap bit.
This swapping action is implemented by qualifying the chip-selects with the swap signal.

Also as a result of setting the swap bit, the secondary flash memory segments csboot2 and
csboot3 appear. They cannot be used for data until after the next step.

» Fig 13: P51XA writes OC hex to PSD VM register.

* Fig 14: Secondary flash memory (csboot0..csboot3) has moved to Data space because of 0C
hex in VM register. Now secondary flash memory segments csboot2 and csboot3 can be used
for general data.

Figure 14 shows the final memory map. The P51XA now has a full 512K bytes of main flash
(fsO .. fs7) in Program space, 16K bytes secondary flash (csboot2/csboot3) in Data space for
general data storage, as well as 8K bytes of battery backed SRAM (rs0) in Data space. The 16K
bytes of IAP loader code (csbootO/csbootl) is no longer in MCU “executable” position.

If the P51XA needs to update the IAP loader code that resides in secondary flash segments

csboot0 and csbootl, it may do so only after setting the unlock bit in the page register. Note that
all page register bits are cleared to zero at power-on and at any system reset.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 37

8FFFF |

SWAP bit =0
VM reg = 12 hex
UNLOCK bit=0

IAP loader code
gets programmed

P51XA

Program Space

nothing mapped

here by JTAG-ISP 04000
or conventional 02000 - 03FFF
programmer tool. 00000 - 01FFF

Figure 11 — Memory Map at Bbot-Up or Reset and During IAP.
PSD VM register initially 12 hex, Main PSD flash in Data space

P51XA
Program Space
8FFFF
fs0
64K bytes PSD
Main Flash
80000
TFFFF fs7
SWAP bit = 0 64K bytes PSD
VM reg = 06 hex 70000 Main Flash
UNLOCK bit=0 6FFFF
fs6
64K bytes PSD
60000 Main Flash
5FFFF fs5
64K bytes PSD
50000 Main Flash
4FFFF fsa
64K bytes PSD
40000 Main Flash
3FFFF
fs3
64K bytes PSD
30000 Main Flash
2FFFF fs2
64K bytes PSD
20000 Main Flash
1FFFF fs1
64K bytes PSD
10000 Main Flash
OFFFF

nothing mapped

04000 |
02000 - 03FFF
00000 - 01FFF

P51XA
Data Space
8FFFF
fs0
64K bytes PSD
Main Flash
80000
fs7 7FFFF
64K bytes PSD
Main Flash 70000
fs6 6FFFF
64K bytes PSD
Main Flash 60000
fs5 5FFFF
64K bytes PSD
Main Flash 50000
fs4 4FFFF
64K bytes PSD
Main Flash 40000
fs3 3FFFF
64K bytes PSD
Main Flash 30000
fs2 2FFFF
64K bytes PSD
Main Flash 20000
fs1 1FFFF
64K bytes PSD
Main Flash 10000
OFFFF
nothing mapped
0A000
150, 8K bytes PSD SRAM | 08000 -
csiop, PSD cntl regs 07000 -
Icd_e, extLCD chip sel | 06000 -
nothing mapped 00400 -
P51XA-G3 Regs/SRAM 00000 -

P51XA
Data Space

| - 8FFFF
| |
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
I nothing mapped |
| !
| !
| !
| |
| !
| |
| !
| |
| !

| 0A000

150, 8K bytes PSD SRAM | 08000 -

csiop, PSD cntl regs 07000 -

Icd_e, ext LCD chip sel | 06000 -

nothing mapped 00400 -

P51XA-G3 Regs/SRAM | 00000 -

09FFF
070FF
06001

05FFF
003FF

09FFF
070FF
06001

05FFF
003FF

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

64K bytes

Figure 12 — Memory Map just after P51 XA writes 06 hex to PSD VM register.

IAP complete, main PSD flash moves to Program space

Waferscale, Inc.O0 Fremont, CAO 800-832-6974 O www.waferscale.com

38

P51XA P51XA
Program Space Data Space

SFFFF - -

I 8FFFF
| nothing mapped | | | |
88000 ! | | 64K bytes
86000 - 87FFF |csboot3 , 8KB PSD 2nd Flash |
84000 - 85FFF |csboot2 , 8KB PSD 2nd Flash | |
82000 - 83FFF [csbootl , 8KB PSD 2nd Flash . |
80000 - 81FFF |csboot0 , 8KB PSD 2nd Flash | | |
7FFFF
fs7 . |
64K bytes PSD ' | | 64K bytes
70000 Main Flash | | |
6FFFF .
fs6 . | |
64K bytes PSD | | 64K bytes
60000 Main Flash . |
5FFFF .
fs5 | | [
64K bytes PSD . I | 64K bytes
SWAP bit=1 50000 Main Flash . |
VM reg = 06 hex 4FFFF | |
UNLOCK bit = 0 fsd4 I
64K bytes PSD ! | nothing mapped 64K bytes
40000 Main Flash | | |
3FFFF
fs3 . | I
64K bytes PSD ' | 64K bytes
30000 Main Flash | | |
2FFFF fs2 ' | |
64K bytes PSD | | 64K bytes
20000 Main Flash . | |
1FFFF fs1 | | |
64K bytes PSD | 64K bytes
10000 Main Flash . |
OFFFF I | |
' |
. 0A000
fs0 | TS0, BK bytes PSD SRAM] 08000 - 09FFF 64K bytes
64K bytes PSD Csiop, PSD cntlregs | 07000 - 070FF 4
Main Flash X Icd_e, extLCD chip sel_| 06000 - 06001
| nothing mapped 00400 - 05FFF
00000 P51XA-G3 Regs/SRAM | 00000 - 003FF

Figure 13 — Memory Map just after P51XA sets swap bit = 1.
IAP loader code is swapped away, main PSD flash takes its place.VM reg = 06, unlock = 0

P51XA P51XA
Program Space Data Space
SFFFF T 1 | SEEFF
| | | | nothing mapped |
64K bytes | :
noting mapped | | C5b00 , 8KB PSD 210 Flash | 86000 - 87FFF
| | [csboot2 , 8KB PSD 2nd Flash | 84000 - 85FFF IAP load d
| | X [csbootl , 8KB PSD 2nd Flash | 82000 - 83FFF onl oader C‘)f/ e'
80000 csboot0 , 8KB PSD 2nd Flash | 80000 - 81FFF UnNyL ZECC:S;/[_91'
7FFFF fs7 | |
64K bytes 64K bytes PSD ' | l
70000 Main Flash | | |
6FFFF fs6 ' I
64K bytes 64K bytes PSD | [I
60000 Main Flash X | |
5FFFF '
fs5 I
64K bytes 64K bytes PSD [I |
50000 Main Flash : | | SWAP bit = 1
4FFFF oy
fs4 | | VM reg = 0C hex
64K bytes 64K bytes PSD : | nothing mapped UNLOCK bit = 0
40000 Main Flash | | |
3FFFF fs3 | |
64K bytes 64K bytes PSD N |
30000 Main Flash | | |
2FFFF ts2 ' |
64K bytes 64K bytes PSD | | l
20000 Main Flash N | |
1FFFF fs1 ! |
64K bytes 64K bytes PSD l l
10000 Main Flash X | |
OFFFF | | :
X 0A000
S4K bries fsO | 750, 8K byles PSD SRAM] 08000 - 09FFF
i 64K bytes PSD csiop, PSD cnilregs 07000 - 070FF
Main Flash ! Tcd_e, ext LCD chip sel | 06000 - 06001
nothing mapped 00400 - 05FFF
00000 I P51XA-G3 Regs/SRAM | 00000 - 003FF
|

Figure 14 — Memory Map just after P51XA writes OC hex to PSD VM register.
Secondary PSD flash memory moves to Data space. swap = 1, unlock =0

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 39

Each time this P51XA system gets reset or goes through a power-on cycle, the PSD presents the
memory map of Figure 11 to the MCU, and the boot sequence is repeated.

Note: When the P51XA is executing code from the secondary PSD flash memory (csbootO and
csbootl), and then it sets the swap bit, it is very important that the P51XA firmware linker has set
up “synchronized” code in the segment of main PSD flash memory that replaces the secondary
PSD flash memory. This is necessary to create seamless MCU operation during the actual swap
of memory since the P51XA is completely unaware that there is a swap going on. It just continues
to fetch opcodes and operands during the memory swap. This requires that the operands and
opcodes in main PSD flash that follow the MCU instructions that actually set the swap bit in the
secondary PSD flash, are continuous. This means that the remainder of the instructions to
complete setting the swap bit is present in main PSD flash memory so there is continuous
operation throughout the memory swapping process.

5.2 PSDsoft Express Design Entry

To implement the advanced memory maps of Figures 11 - 14, invoke PSDsoft 2000, open the
project “logicXA” from the second design example (if not already open). Now pull down the
menu ‘Project’ from the top of the screen, and select ‘Save As’. For this third design example,
save the second project under the new name “advancXA”. Now click on the ‘Define PSD
Pin/Node Functions’ box in the design flow diagram. Chkt >>to get to the ‘Page Register
Definition’ screen since no pin assignments need to be changed for this third design.

5.2.1 Page Register Definition

You will need to define two additional PSD page register bits to be used for logic as shown
below labeling one bit “swap” and the other bit “unlock”.

=3 D esign Assistant

Page Register Definition | Chip Select Equations | I}0 Logic Equations

Define how individual PSD page register bits will be used.
E ach bit added for 'paging’ can double the MCU address range. Start with pgrll.
E ach bit added for 'logic' can be uzed as logic input ko the PLDz. Start with pgr?.

— Define uge of page register bit:
Page Reg Bit Type of Use Mame of Lagic Signal

parv: [~ pagng ¥ logic lgwap—
park: " paging ¥ logic W
parx [paging T logic l—
pard: [paging [logic I

por: [pagng ¥ logic lbegin—
par: [paging T logic l—
parl: ™ paging T logic I—
parl: o paging o logic l—

— Dezcription

Select this bit for general logic. Always start with par? and add more -
bitz going downwards. Page register bits used in thiz manner implement
general logic sighals that are inputs ta the PLD=. Enter the lagic signal _I
-
Ne:-ct)) Reset All Yiew Daone I Cancel |

Click Next >>.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 40

5.2.2 Chip-Select Equations

The chip-select equations for PSD SRAM (rs0), PSD control registers (csiop), and the external
LCD module (Icd_e), and most of the internal PSD memory segments do not change from the
second design example. Only chip-selects for main PSD flash memory segment fsO, and the
secondary PSD flash memory segments csbootO — csboot3 need to change for this third design
because they are affected by memory swapping.

These internal memory chip-selects must be qualified with the page register bit “swap” as shown
below. The secondary PSD memory segments, csbootO0 and csbootl, must be additionally
gualified by “unlock” to prevent the MCU from inadvertently writing to IAP boot and loader
code after IAP is complete. The following illustrates how the chip-selects will look when you
enter their definition based the memory maps of on figures 11 — 14.

Lizt of chip zelects — Enter system memony information
r=ll Page Hex Start Hex End Logical AMD of Signal Qualifiers J
Cxio Mumber Addrezs Addrezs [more than one OF)]
fSO: CTN—
o |_j g [B0000 g [BFFFF o [lswap
fz2
fa3 Logical OF with nest statement:
fzd
f5 — . [0 . [FFFF o [swar
: = | |

Lizt af chip zelectz — Enter zystem meman infarmation

1zl Fage Hex Start Hex End Logical AMD of Signal Qualifiers J
csiop Murmnber Address Address [rore than ane OK]
fz0

o1 |_j & [0 g [IFFF g Jlawar

fz2

fz3 Logical OR with next statement:

fzd =

;sg — & [B0000 g [BIFFF g fswap & unlock

. 3
csboot0: ﬁfmm Logizal OF with nest statement:

Lizt of chip zelects — Enter system memony information

r2l Fage Hex Start Hex End Logical AMD of Signal Qualifiers J
3o Munnber Addreszs Address [more than one OF)
fz0

e [e 000 g [3FEF g Jwen

fz2

fa3 Logizal OF with next statement:

fzd =

;sg = & [B2000 g [BIFFF [y fswapd urlock

%

csbootl: fs?‘b " Logizal OF with next statement:
: czhonl

EREEE—— = i | o |

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 41

Lizt of chip zelects — Enter system memony information _I
r=l Fange Hex Start Hex End Logical AMD of Signal Qualifiers
csiop MHumber Addrezs Addrezs [more than one OF)]
f=0 =
e rj i |eaunn ;. IEEFFF i Iswap
fz2
fz3 Logical OF with nest statement:
fzd
= =1 Y Y
%
fs7 Logical OR with nest statement:
czboat
csboot2: et [] 6 | G |
CShDDtB — Pasnltzmtb amiiahmn d
Lizt of chip selects — Enter spstem memory information _I
1=l Page Hex Start Hex End Logical AMD of Signal Qualifiers
csiop Murnber Addrez= Addresz [mare than one OF]
f=0 -
e rEI § [36000 g [BTFFE g [swap
fe2
f=3 Logical OR with nest statement;
f=d
2 =0 IS
z
fe7 Logical OR with nest statement;
czboot]
cshoot] =
| & & &
csboot3: csboot? I__I I I I d
i — Resulkant equation |

Notice that these PSD physical memory segments can appear in more that one MCU address
space depending on the “swap” and “unlock” qualifiers. Now the memory maps of Figures 11 -
14 have been implemented. Cliblone and you should see the main flow diagram.

5.2.3 Finishing the design

There’s no need to edit the the ABEL HDL statements since we have not touched the CPLD.
Click the ‘Fit Design to Silicon’ box. After a successful fit, click the ‘Merge MCU Firmware’
box. You will see an informational dialog box pop up that indicates non-natural address signals
were used in PSD chip-select equations. This is because of the “swap” and “unlock bits”.
PSDsoft displays this message to remind you that your MCU compiler/linker should account for
any non-naturual MCU address signals. C@k, since this does not apply to our example.

Now specify the file name \PSDsoft\Examples\boot_16K.hex for segments csboot0 and csbootl.
There is no P51XA firmware in this file, it is used only for illustration. You will find the pattern

AA hex in csbootO, and the pattern BB hex in csbootl. No firmware filename needs to be
designated for the main PSD flash segments (fsO — fs7) since they will be programmed by the
P51XA during IAP. No firmware file needs to be specified for secondary PSD flash segments
csboot2 and csboot3 because these will be used for general purpose data written by the P51XA.
Click OK in the merging screen to create a composite object file for programming. You are now
ready to program the PSD as described in section 3.2.12.

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 42

6 Conclusion

These examples are just three of an endless number of ways to confidgeaeyfHHeASH™ PSD for

your system. Concurrent memories with a built-in programmable decoder at the segment level offer
excellent flexibility. The ability to expand your system does not require any physical connection
changes, as everything is configured internal to the PSD. And finally, the JTAG channel can be used
for ISP anytime, and anywhere, with no participation from the MCU. All of these features are
crosschecked under the PSDsoft 2000™ development environment to minimize your effort to design
a flash-based system capable of ISP and IAP.

7 References

1) PSD4235G2 Data Sheet
2) Application Note 54—3TAG Information—PSD8XXfer detailed use of the JTAG channel

Waferscale, Inc.0 Fremont, CAO 800-832-6974 O www.waferscale.com 43

