APPLICATION NOTE

P8xC591 Microcontroller in
CAN Applications

ANO00043

Fhifips = PHILIPS
Semiconductors N\

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Abstract

The P8xC591 is an advanced 8-bit CAN microcontroller for use in general industrial and automotive
applications. The CAN controller fully supports the international standard for Controller area network
data link layer and medium access control (ISO11898). CAN is a serial bus protocol being primarily
intended for transmission of control related data between a number of bus nodes.

This application note provides information how to use the P8xC591 in CAN applications.

© 2000 Royal Philips Electronics
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and
reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use.
Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

APPLICATION NOTE

P8xC591 Microcontroller in
CAN Applications

ANO00043

Author(s):
Hartmut Habben, Peter Hank

Philips Semiconductors
Systems Laboratory Hamburg
Germany

Keywords

P8xC591, CAN Controller, PeliCAN, CAN 2.0B
Controller Area Network (CAN)

Number of pages : 45

Date: 2000-08-18

3

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Summary

This Application Note covers the CAN related items of the P8xC591. It is assumed the reader is familiar
with the P8xC591 data sheet [1] and the use of Controller Area Network (CAN) [2] as specified in
ISO11898. Therefore, the discussion will not enter into any great detail on either the CAN specification
or the P8xC591 data sheet.

The Application Note describes in more detail complex items of the data sheet and gives the user valuable
hints for CAN applications. Several flow diagrams and program examples could be used as a starting point
for the development of application software.

Most common tasks like initialisation, reception and transmission of CAN messages as well as more
complex functions like automatic bit-rate detection, Higher Layer Protocol support and acceptance filter
"change on the fly’ are illustrated. The ’C’ code examples represent the minimum requirements needed to
accomplish each task.

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043
Contents
I. INTRODUCTION...cciitiiiiiiininininnnnnnsss 6
2. OVERVIEW ...uiiiiiinnnnnninnninsnsssesssssss 6
2.1 SyStem OVEIrVIEW ...ttt 6
2.2 BlOCk DIagramu......iiiiiicn b s 7
2.3 Description of CAN FEATUIES ..ottt ases 8
2.4 Main differences between P8xC591 and SJA1000 CAN Functionality..........cccocvuvivunivicuruncnnnes 9

3. CAN FUNCTIONALITY .rrrnrcrcscsses 10
Bl CPU INLEITACE ..ttt st st ettt st sttt sttt 10

3.1.1 Special Function Registers . .. 10

3.1.2 Fast CAN Register Access with Auto-Increment . I

3.2 INIEIAISATION ottt sttt ettt ettt ettt bttt 12

3.2.1 Reset Mode and Operating Mode .12

3.2.2 CAN CONrOllEr SEL-UP.....vurueerereerercenenneraeaertasessesssssessessesserssessessssesesssssessesssssessessens 12

3.2.3 Flow Diagram 14

3.3 AcCeptance Filter ... 16

3.3.1 Acceptance Priority......... 18

3.3.2 Higher Layer Protocol Support, Acceptance Filtering on Data Bytes..........cccceueeeureeecrnerneenersersersessersersnees 19

3.3.3 Change Acceptance Filter on the fly....... 21

3.4 CAN INTEITUPLS oottt 23

3.5 TranSMUSSION .ttt ettt ettt sttt et sttt ettt et e et 25

3.5.1 Polling Controlled Transmission e aes 25

3.5.2 Interrupt Controlled TransSmiSSioN ... sesssssssssssssssssssasens 26

3.5.2.1 Abort Transmission...... 27

3.6 RECEPLION. ...ttt bbb bbb bbbt 29

3.6.1 Polling Controlled Reception .29

3.6.2 Interrupted Controlled RECEPLIONcccwueurueuereererercrereeeienessessesesessessesseesesasssessessenns 30

3.6.3 Data OVerrun Handling......ccoccvcecerenenernerneenereeeneneesseseessessessessesssesesssssssssesssssssens w31

3.6.4 Receive Interrupt - Level or High Priority 32

3.7 AUtomatic Bit-rate DeteCtiON......c.ccceeieiririreecicieietetetreeeeeiet ettt ettt ettt e aaeacs 34

3.8 CAN CoNLroller Self TeSLScccccveeurreriririreeeeieieieistststneeeesetstststststee e st tstststasas e e s ssesssssssasacs 38
3.8.1 Global Self Test 38

3.8.2 Local Self Test 39

4. REFERENCES........iiinininiiinininininiissssiss 40
5. APPENDIX ...ccuvuirerrrerererememesssesssesess 41

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

I. INTRODUCTION

The P8xC591 is an advanced CAN microcontroller for use in general industrial and automotive
applications. In addition to the enhanced functionality of the Philips "Rx+ core" [5] this device provides a
number of dedicated hardware functions for these applications.

The CAN controller of the P8xC591 fulfils the complete CAN2.0B specification and provides a direct
software migration path from the SJA1000 stand-alone CAN controller [6]. With a superset of CAN
features like an enhanced acceptance filter, support for System Maintenance, Diagnostics, System
Optimisation and a Receive FIFO characteristics it is intended to be used in versatile application areas.

This Application Note covers the CAN related items of P8xC591 applications. To apply and understand
the application examples given in this document, the reader should be familiar with the Philips P8xC591
data sheet [1]. The ’C’ code in the examples describe a basic set of software driver routines which could be
used as a starting point for development of application software. All used definitions are listed in the

Appendix.

2. OVERVIEW

2.1 System Overview

The P8xC591 is designed to work with a minimum number of external components. Figure 2-1 shows the
circuitry of a CAN node using the ROM- or OTP EPROM- version of the P8xC591. The only additional
components that are required are a crystal plus two capacitors to drive the on-chip oscillator, a capacitor
connected to the Reset pin, using the on chip power-on RESET circuitry and a transceiver to connect the

P8xC591 to the CAN bus.

ﬁ XTAL1 >0
[« 1
3.5..12 MHz C > 2
[« 3 digital 1/O or
>~
XTAL2 [« 4 PORT O low order address/data bus
<> 5 [
> 6 I
PSEN <— «>7
ALE «—
+5V —
EA RXDC | RxD CANH
RST TXDC - TXD CANL
+ > 2
[« 3 anlogue or
Power-on Reset 4 (PORT1 digitgl /0 Transceiver
2.2 yF [«—» 5
[« 6
AVref+ <€— P8xC591
re (44-PIN) <> 7) X’V fvee Gnd 1
AVss
vidb—— ¥V
0 «—
PWM output Vss
1 <—
0 «—>f [«—» 0
1 <> > 1 Lo
2 <> > 2 CAN Bus
o 3 <> [« 3 digital 1/O or
digital /O PORT 3 9
9 4 <> le—> 4 (PORT2 high order address bus
5 <> <> 5
6 <«—>| > 6
7 <> > 7

Figure 2-1: Typical P8xC591 CAN Application

6

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

2.2 Block Diagram
Figure 2-2 shows the block diagram of the P83C591 (ROM) or the P87C591 (OTP EPROM) versions.

l vdd l Reset

CAN Controller

16K
CAN Interface with Special Function Registers (EPROM PW

CANCON
CANSTA

M
- o
CANMOD CANDAT
> Port 0
i 1 12C

CPU]
1 1 socs1 [— > Port1
Message Buffer
> Port 2

— Acceptance Filter > Receive FIFO <—>‘ Timer 0/1
> Port 3

256 bytes

RAM - <—>‘ Watchdog
Transmit Buffer

.. L

Figure 2-2: Block Diagram of the P8xC591

Y

——— PWM

RXDC » CAN
TXDC < Core Block

A
A

A

CAN 2.0B

In addition to a standard set of peripherals the P8xC591 contains a powerful CAN controller block which
is also known as PeliCAN. This embedded CAN controller includes the following functional blocks:

The CAN Core Block controls the transmission and reception of CAN frames according to the CAN
specification CAN2.0B.

The CAN Interface consist of 5 Special Function Registers which perform the link between CPU and
CAN controller. Access to important CAN registers is accomplished by a fast autoincrement addressing
feature and bit-addressable Special Function Registers.

The Transmit Buffer of the CAN controller is able to store one complete CAN message (Extended or
Standard Frame Format). Whenever a transmission is initiated by the CPU, message bytes are transferred

from the Transmit Buffer into the CAN Core Block.

When receiving a message the CAN Core Block converts the serial bit stream into parallel data for the
Acceptance Filter. With this programmable filter the P8xC591 decides which messages actually are
received.

All received messages accepted by the Acceptance Filter are stored within the Receive FIFO. Depending
on the mode of operation and the data length up to 21 CAN messages can be stored. This enables the user
to be more flexible when specifying interrupt services and interrupt priorities for the system because the
probability of data overrun conditions is reduced extremely.

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

2.3 Description of CAN Features

The CAN 2.0B active CAN controller supports 11-bit standard and 29-bit extended identifiers. A
maximum CAN bit-rate of 1Mbit/s is already achievable with an 8 MHz clock. An on-chip 64-byte
Receive FIFO and a 13-byte transmit buffer is implemented.

In addition to the general CAN features the P8xC591 provides enhanced PeliCAN, System Maintenance,
Diagnostics and Optimisation Features known from the SJA1000 stand-alone CAN controller [6] from
Philips Semiconductors.

PeliCAN Features:

* Four independently configurable Acceptance Filter Banks

* Four possible Acceptance Filter Configurations in each Bank

» Each filter has two 32-bit specifiers: a 32-bit Code and a 32-bit Mask

» All filters are changeable "on the fly’

* Acceptance Filter with Higher Layer Protocol Support

» Receive FIFO characteristic

» Listen Only and Self Test Mode

* Receive Interrupt only if FIFO Receive Interrupt Level is reached

* Receive Interrupt immediately at reception of High Priority Data Frames

System Maintenance, Diagnostics and Optimisation Features:

Arbitration Lost Capture * Interrupt on arbitration lost

Detailed CAN bit position of last arbitration
lost event is captured

Advanced Error Diagnostics * Error Code Capture with detailed bit position
and type of error

= Readable Error Counters
= Several different Error Interrupts

* Programmable error warning limit

Listen Only Mode * Monitor Function

= Automatic Bit-rate Detection

CAN Self Test Mode = System Self Tests
* Reception of own messages
* Global Self Test (acknowledge required)
* Local Self Test (no acknowledge required)

Philips Semiconductors

P8xC591 Microcontroller in
CAN Applications

Application Note
ANO00043

2.4 Main differences between P8xC591 and SJA1000 CAN Functionality

SJA1000

P8xC591

One Acceptance Filter Bank with Dual or Single
Filter support.

Four Acceptance Filter Banks with Dual or Single
Filter support in each bank.

All filters are changeable "on the fly’ (see also
chapter 3.3.3).

One Receive Interrupt configuration:

Receive Interrupt is generated on the reception of
any message (while the Receive FIFO is not empty).

Two Receive Interrupt configurations possible:
1. High Priority Interrupt (see also chapter 3.3.1)

2. Receive Interrupt Level

CAN Bit Timing Calculation

CAN Bit Timing Calculation

t,=2/f,, x(32BRP.5+........ +1) t,=1/f, x(32BRP.5+....... +1)
BasicCAN Mode '
PeliCAN Mode PeliCAN Mode

Different Transmit output stage configurations with
two output pins (TX0, TX1):

Normal, Bi-phase, Clock and Test output Mode

Transmit output stage with one output pin

(TXDC) in Normal Mode configuration

' The SJA1000 is the successor product for the PCA82C200 Stand-alone CAN Controller. The BasicCAN mode keeps the

SJA1000 software compatible to the former PCA82C200.

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3. CAN FUNCTIONALITY

The CAN protocol 2.0B as specified in [2] is completely handled by the CAN Core Block, see also chapter
2.2. The CPU of the P8xC591 initialises and controls the communication. The following chapters
describe all functions necessary to run CAN communication with the P8xC591.

3.1 CPU Interface

3.1.1 Special Function Registers

Access to all PeliCAN registers is performed via five Special Function Registers (SFR). They are mapped
into the address range of the P8xC591. For all PeliCAN address locations indirect pointer (CANADR)
based addressing is achieved. In addition frequently used PeliCAN registers can be accessed directly via
CAN Special Function Registers.

Figure 3-1 shows all CAN Special Function registers including their PeliCAN registers. A direct read/write
access to the PeliCAN Mode register is possible via CANMOD. The Command register is accessed while
writing to CANCON and the Interrupt register is read while reading CANCON. The CANSTA register
allows a write access to the Interrupt Enable register. Reading CANSTA is a direct access to the PeliCAN
Status Register. CANSTA is bit-addressable and allows direct addressing of single status flags which is
always useful for polling.

CAN
Special Function Registers

Address Address all PeliCAN
pointer Registers
C1H CANADR [—
C2H CANDAT | fe3d/write o
C4H CANMOD |« [€2d/write o MODE
C3H CANCON ——write Command
- read Interrupt
COH CANSTA* | write | |nterrupt Enable
- read Status

* = register is bit addressable

Figure 3-1: CAN Special Function Registers

10

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

All other CAN controller registers need to be addressed indirectly. The CANADR register points to the
address of the PeliCAN register. During a write access the data to the addressed register has to be written
into CANDAT. During a read access data from the addressed register can be read from CANDAT.

The following example illustrates the functionality for direct and indirect addressing of PeliCAN registers:

/* Direct addressing of Mdde Register */
CANMOD = 0x01; /* set Reset Request in Mdde Register */
/* Indirect addressing of Bit Timng Registers 0 and 1 */
CANADR = BTRO; /* set address to BTRO register */
CANDAT = 0x45; /* wite data to BTRO */
CANADR = BTR1; /* set address to BTRL register */
CANDAT = 0x2B; /* wite data to BTR1 */

3.1.2 Fast CAN Register Access with Auto-Increment

Indirect addressing, as described in the previous chapter, could be time consuming when addressing the
CAN message buffers and the acceptance filters. Therefore, the P8xC591 includes an autoincrement mode
for fast register addressing. The autoincrement feature is automatically activated when PeliCAN addresses
beyond CAN address 31 (decimal) are selected by CANADR. Every read or write access to CANDAT
automatically increments the CANADR pointer. This stack-like reading and writing could effectively
being used for setting up a new transmit message as described below or for reading the RX Buffer.

/* setting up a new CAN nessage for transmtting */
CANADR = TBF; /* point to 591 TX Buffer */
CANDAT = Transni t Message[0] ; /* wite TX Frane Information */
CANDAT = Transm t Message|[1] ; /* wite TX Identifier 1 */
CANDAT = Transni t Message[2] ; /* wite TX Identifier 2 */
CANDAT = Transni t Message[3] ; /* wite TX Data Byte 1 */
CANDAT = Transm t Message| 4] ; /* wite TX Data Byte 2 */

[* copy receive message from RX Buffer into the CPU RAM space */

CANADR = RBF; /* point to 591 RX Buffer */
ReceiveMessage[0] = CANDAT; /* read RX Frame Information */
ReceiveMessage[1] = CANDAT; /* read RX Identifier 1 */
ReceiveMessage[2] = CANDAT; /* read RX Identifier 2 */
ReceiveMessage[3] = CANDAT; /* read RX Data Byte 1 */

ReceiveMessage[4] = CANDAT; /* read RX Data Byte 2 */

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.2 Initialisation

3.2.1 Reset Mode and Operating Mode

After a power-up or hardware reset, the CAN controller will be in Reset Mode. In this mode, the RM bit
in the Mode register will always be ‘I’. If the CAN controller is not in Reset Mode, setting the RM bit
(either by hardware or software) will force it into Reset Mode. When in Reset Mode, the internal state
machine of the CAN controller is frozen.

Typically after a power-up or hardware reset, once the boot-up and initialisation routines are complete, the
CPU will put the CAN controller into Operating Mode by software (clearing the RM bit). In Operating
Mode, any of the following will cause the RM bit to be set, forcing the CAN controller into Reset Mode:

e Hardware reset
* Software writing ‘1’ to the MOD.0 (RM) bit
e Bus-Off condition

In addition, the ‘special modes’ of the CAN controller can only be entered from Reset Mode. These modes
are the Test Mode, the Receive Polarity Mode, the Self Test Mode and the Listen Only Mode. After
leaving the Reset Mode the CAN controller returns to the mode defined within the Mode Register.

3.2.2 CAN Controller set-up

The CAN controller has to be set-up for CAN communication after power-on or after hardware reset.
An initialisation procedure should cover the following items:

* Mode of Operation

» Acceptance Filter

* Bus Timing [3]

* TXDC Output pin configuration

= Interrupts

A Flow Diagram accompanied by a programming example of the initialisation procedure is shown in
Figure 3-2.

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

For the CAN controller initialisation only the following registers and register bits shown in Table 1 are
relevant. Most CAN Registers offer a convenient restore feature, where user configurations are kept and
not changed after a Hardware Reset or putting the CAN controller into Reset Mode (marked by 'no
change’ in Table 1).

Register Bit names Register values:
After | After By
Power | HW setting
-up Reset MOD.0
(RM) bit'
Mode Register MOD.7 0 0 0 Test Mode
MOD.6 0 0 0
MOD.5 0 0 0 Receive Polarity Mode
MOD.4 0 0 0
MOD.3 0 0 0
MOD.2 0 0 no change | Self Test Mode
MOD.1 0 0 no change | Listen Only Mode
MOD.0 1 1 1 Reset Mode
Port 1 Configuration P1IM1.1 0 0 no change | Output driver configuration for the
Register P1M2.1 0 0 no change | CAN TXDC pin should be set to push-

pull’ means PIM1.1="0°, PIM2.1="1".

Interrupt Enable Register IER xxh no change | no change | CAN related Interrupt Enable Register
Rx Interrupt Level Register | RIL 00h 00h no change | Receive Interrupt Level

Bus Timing Register 0, BTRO xxh no change | no change | Synchronisation Jump Width

see also [3] Baud Rate Pre-scaler

Bus Timing Register 1, BTRI xxh no change | no change | Samples Per Bit

see also [3] Time Segment

Acceptance Filter Mode ACFMOD | 00h no change | no change | Message Format for Bank 4, 3, 2, 1
Register Accept. Filter Mode for Bank 4, 3, 2, 1
Acceptance Filter Enable ACFEN xxh no change | no change | Filter 1 & 2 Enable for Bank 4, 3, 2, 1

Register

Acceptance Filter Priority ACFPRIO xxh no change | no change | Filter 1 & 2 Priority for Bank 4, 3, 2, 1
Register

Acceptance Code Register ACR(3to 0) | xxh no change | no change | ACR for Bank 4, 3, 2, 1

Acceptance Mask Register AMR(@3 to 0) | xxh no change | no change | AMR for Bank 4, 3, 2, 1

Table 1: CAN Controller register set-up

" CAN controller goes into Reset Mode by setting the MOD.0 (RM) bit in the Mode Register.

* After power-up and hardware Reset the default Port1.1 (TXDC) pin configuration is set to "pseudo bi-directional”
(P1IM1.1=°0’, P1M2.1=°0).

13

Philips Semiconductors

P8xC591 Microcontroller in
CAN Applications

Application Note
ANO00043

3.2.3 Flow Diagram

Figure 3-2 presents a short and simple CAN controller initialisation routine. The according 'C’ code is
shown on the next page.

Start of Initialisation or
Reconfiguration

\
Enter CAN Controller Reset Mode

\
TXDC Port (P1.1) Configuration

NO
CAN Interrupts
used?

YES

Configuration of CAN related Interrupts

A

/

Configuration of CAN Bit Timing

A

/

Configuration of the Acceptance Filter

A

/

Select Mode

of Operation,

Exit CAN Controller Reset Mode

A

/

End of Initialisation or
Reconfiguration

Figure 3-2: Initialisation Flow Diagram

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example 'C' code — CAN Initialisation -

The figure below is the according ’C’ code to the Flow Diagram from the previous page.
void init_can_controller (void)

{
/* Enter CAN Controller Reset Mbde:

________________________________ *
CANMOD = 0x01; /* set the CAN controller to reset */
/* nmode to start initialization */
/[* TXDC Port (P1.1) Configuration:
/* Pin TXDC set to push-pull */
P1M2 = P1M2 | 0x02; /* PIM2.1="1", PIML.1 = 'O (default) */
/* Configuration of CAN related Interrupts:
CANSTA = 0x03; /* receive and transmt interrupts =)
/* are enabled in this exanple */
/* Configuration of CAN Bit Tim ng:
CANADR = BTRO; /* BTRO and BTRLl are progranmed for */
CANDAT = 0x45; [* 125 kbit/s @2 MHz crystal */
CANADR = BTR1; /* TSEGL = 12, TSEQ = 3, SIW= 2 */
CANDAT = 0x2B; /* Samples = 1 -> sanple point ~81 % */

/* Configuration of the Acceptance Filter:

Filter 1 of bank 1 is configured to receive ID = 010. 0000. 0XXX */

CANADR = ACR10; /* set address to Acc. Code Register 0 (Bank 1)*/
CANDAT = 0x40; /* acceptance code 0 used for filtering */
CANADR = AMR1O; /* set address to Acc. Mask Register 0 (Bank 1)*/

*/
CANDAT = 0x00; /* bankl: acceptance mask 0 =)
CANDAT = OxFF; /* bankl: acceptance nmask 1 don't care */
CANDAT = OxFF; /* bankl: acceptance nmask 2 don’'t care =]
CANDAT = OxFF; /* bankl: acceptance nmask 3 don't care */
CANADR = ACFMOD; /* set address to ACF Mbde register =)
CANDAT = 0x55; /* single accept. filters for 11-bit ID s (SFF)*/
CANADR = ACFPRIO, /* set address to ACF Priority register */
CANDAT = OxFF; /[* high priorities for all filters */
CANADR = ACFEN,; /* set address to ACF Enabl e register */
CANDAT = 0x01; /* enabl e acceptance filter 1 of bankl */

/* Sel ect Mbde of QOperation, Exit CAN Controller Reset Modde:

CANMOD = 0x00; /* put CAN controller into operation node */

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.3 Acceptance Filter

With the P8xC591 Acceptance Filter, incoming CAN messages are filtered so that only predefined
messages are accepted and stored in the Receive FIFO. If enabled, only these accepted messages generate a
Receive Interrupt and thus reduce the CPU processing time for servicing CAN.

Four identical Acceptance Filter Banks can be configured independently. Each bank has the functionality
known from the SJA1000 with the extension, that the filters are changeable on the fly’ (see also chapter
3.3.3).

CAN Frames
ETTTIIT1IT1]

1|2|3]4]5|6|7]8| |BANKa
Data by'[eS ACCEPTANCE FILTER Receive
Buffer Window
64 byte
Receive FIFO

4 Acceptance Filter Banks

Figure 3-3: Acceptance Filter

The Acceptance Code Registers (ACRn) and the Acceptance Mask Registers (AMRn) define the
Acceptance Filter. Within the Acceptance Code Registers the bit patterns of receive messages are defined.
The corresponding Acceptance Mask Registers allow defining certain bit positions to be 'don‘t care’ by
setting them to '1'. With this feature groups of CAN messages can be defined for reception.

ACR 101. 1010. 0101

AMR 000. 1111. 0000

Accepted messages 101. xxxx. 0101

Figure 3-4: Example of Acceptance Filtering

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

As shown in Figure 3-5, each Acceptance Filter Bank can be configured as a Single Filter or as a Dual
Filter. Both filter configurations support Standard CAN frames (11-bit ID) as well as Extended CAN
frame (29-bit ID). For more details on acceptance filter configurations see the P8xC591 Data Sheet [1].

All four configurations for each filter bank can be defined in the Acceptance Filter Mode Register and are
only possible during the Reset Mode of the CAN controller.

ACFMOD Register CAN Address: 1Dh

Symbol Function

MFORMATBn | Message Format: ‘0" = SFF (11-bit ID), ‘1’ = EFF (29-bit ID)
AMODEBn Accept. Filter Mode: ‘0’ = Single Accept. Filter, ‘1" = Dual Accept. Filter
n=Bank4,3,2o0r1

Table 2: Acceptance Filter Mode Register

Enable Enable

—> —> -
Priority Priority 8
Level Level ic

100 RTR| [][]0

Enable Enable o~

—> —> 5
Priority Priority E
Level Level

Dual Filter, Extended Frame Format

Enable Enable

—> —>
Priority Priority
Level Level

Single Filter, Standard Frame Format Single Filter, Extended Frame Format

Figure 3-5: Four possible Acceptance Filter Configurations

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.3.1 Acceptance Priority

For each Acceptance Filter two different interrupt configurations are possible.

1. High Priority Interrupt 2. Receive Interrupt Level

A Receive Interrupt is generated immediately, ifa A Receive Interrupt is generated, if the number of
CAN frame passes an Acceptance Filter which is message bytes in the Receive FIFO exceeds the level
configured for 'High Priority Interrupt’ genera- specified in the Receive Interrupt Level Register,
tion. This allows using, e.g., certain Acceptance RIL (more details in chapter 3.6.4).

Filters for alarm message recognition.

Both interrupt configurations are defined in the Acceptance Filter Priority Register.

ACFPRIO CAN Address: 1Fh

Symbol Function
BnF2PRIO Filter 2 Priority, ’1” = High Priority Interrupt, 0’ = Rx Level Interrupt
BnF1PRIO Filter 1 Priority, 1’ = High Priority Interrupt, '0” = Rx Level Interrupt
n=Bank4,3,2o0r1

Table 3: Acceptance Filter Priority Register

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.3.2 Higher Layer Protocol Support, Acceptance Filtering on Data Bytes

Example: DeviceNet Protocol, Explicit Messaging.

The DeviceNet Protocol [7] uses the Standard Frame Format with an 11-bit CAN Identifier. An Explicit
Message uses the data field of a CAN frame to carry DeviceNet defined information. The data field (0..8
bytes) of a transmission that contains the complete Explicit Message includes a Message Header and the
entire Message Body. The Message Header is specified within the 1" Data Byte of the CAN data field and
contains the Destination MAC ID.

Group 3 Message

Assume device X allocated Group 3 Message ID value 4
Source MAC ID = 0A
|7 Frag = 0, Transaction ID = 0, Destination MAC ID = 2

Device X Identifier =11 100 001010, Data =02 rest of Explicit Message ... 5 Device Y (P8xC591)
MAC ID = 0Ah " MAC ID =02h

Figure 3-6: Example for an Explicit Messaging Connection

The 11-bit CAN Identifier Field in combination with the MAC ID in the Message defines a Source or
Destination MAC ID and has to be examined.
The P8xC591 Acceptance Filter can easily filter both, the Message Header and Source MAC ID.

With the Higher Layer Protocol Support, filtering on the MAC ID in the 1" Data Byte the P8xC591 will
get less interrupted and the overall performance of the whole system can be improved significantly.

Additionally the 2™ Data Byte containing the Service Code Information in the Open Explicit Messaging
Connection can be used as well for acceptance filtering.

CAN Identifier Control 1st Data "
Field Field Byte 2nd Data Byte
r A Y A N N
[1D28..1ID18 RTR] T 11T ST AT 1M1 1
Acceptance
Filtering

Figure 3-7: DeviceNet Protocol, Explicit Messaging

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example 'C' code — Device Net Initialisation

The following ’C’ code is an example for an Acceptance Filter configuration for Explicit Messaging in the
DeviceNet protocol, see also Figure 3-6. The P8xC591 is used as the Device Y.

Typically the function would be called during an initialisation of a CAN node when the CAN controller is
in Reset Mode. In any other case (CAN controller is not in Reset Mode), the call of this function would be
a re-configuration of the Acceptance Filter and should be handled as a change on the fly’ of the filter. In
this case the desired filter has to be disabled before calling the function and enabled after exiting the
function (see also chapter 3.3.3).

/**/

/* */
/* TITLE Exanple 'C Code for */
/* Devi ceNet, Explicit Messagi ng Connecti on */
/* */
/* Functi onal Descri ption: */
/* This Function is an exanple for an Acceptance Filter */
/* configuration for Explicit Messaging in the Devi ceNet */
/* pr ot ocol . */
/* */
/* Message paraneters: */
/* Message Group, Source MAC I D, Destination MAC ID */
/* are directly used to set-up a P8xC591 acceptance filter */
[* */
/* NOTI CE: Copyright (C) 2000 PHI LIPS Sen conduct ors */
[* */

/**/

#i ncl ude "reg591. h"
#i ncl ude "c591_def. h"

voi d Explicit_Messaging_Filter_Configuration
(BYTE G oup, BYTE ID, BYTE SourceMAC, BYTE Dest MAC)

{
/* Configuration of the Bankl Acceptance Code Register O:
__ * [
CANADR = ACR10; /* set address to Acc. Code Register 0 (Bank 1) */
CANDAT = (Group << 6)+(ID << 3) +(SourceMAC >> 3);/* ACRO */
CANDAT = (Sour ceMAC << 5); /* ACR1 */
CANDAT = Dest MAC; /* ACR2 “

/* ACR3 not used */

/* Configuration of the Bankl Acceptance Mask Regi ster O:

*/
CANADR = AMR10; /* set address to Acc. Mask Register 0 (Bank 1) */
CANDAT = 0xO00; /* AVRO =
CANDAT = OxO0F; /* AVRL */
CANDAT = 0xO00; /* AVR2 =
CANDAT = OxFF; /* AVR3 =
}

20

Philips Semiconductors

P8xC591 Microcontroller in
CAN Applications

Application Note
ANO00043

3.3.3 Change Acceptance Filter on the fly

The P8xC591 Acceptance Filter configuration can be changed in two different ways. Besides the most
common way, changing the filter during the CAN controller Reset Mode, the P8xC591 offers the new
"change on the fly’ feature. With this feature an Acceptance Filter configuration can be changed during a
running CAN communication. The Flow Diagram in Figure 3-8 is a general example how to re-configure
the Acceptance Filter during the CAN controller Operating Mode. The according ’C’ code is shown on

the next page.

Change 'on the fly'

|

Enter Operating Mode

I

CAN
communication
not interrupted !

| Disable the desired filter |

v

| Change filter configuration |

v

| Enable the changed filter |

Change through 'Reset Mode'

)

Enter Operating Mode

- — — — — CAN
communication

interrupted !

| Enter Reset Mode |

v

| Change filter configuration |

v

| Enter Operating Mode |

Figure 3-8: Change of Acceptance Filter Flows

Change ’on the fly’

Each defined Acceptance Filter can be disabled and
enabled with certain bit-locations in the Acceptance
Filter Enable Register. If the corresponding filter is
disabled, it is possible to change the Acceptance
Filter configuration during normal operation. This
very convenient way of changing a filter where the
CAN bus communication is not interrupted is
called "change on the fly’ feature.

Change through ’Reset Mode’
During Reset Mode of the CAN controller, all

Acceptance Filters can be defined or re-defined.
During normal operation this method has some
disadvantages:

- CAN communication is interrupted and
some messages could be lost during this
time.

- Change process takes more time.

21

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example 'C' code — Change on the fly -

Below is the according ’C’ code to the Flow Diagram from the previous page. In this case a Standard CAN
Frame Format (SFF) with 11-bit identifier is used and one of the filters is changed on the fly.

/**/

/* */
/* TITLE Exanple 'C Code for */
/* the "change on the fly' feature of the P8xC591 CAN Controller */
/* */
/* Functi onal Descri ption: */
/* This Function is a typical exanple for the 'change on the fly’*/
/* feature for changing a configuration of the P8xC591 Acceptance*/
/* Filter during normal Operating Mdde. A Standard CAN Frane */
/* Format (SFF) with 11-bit identifier was used in this exanple. */
/* */
/* NOTI CE: Copyright (C) 2000 PHI LIPS Seni conduct ors */
/* */

/**/

voi d change_on_the fly (void)

/* Disable the desired Filter
___________________________ * |
= Ox1E; /* set address to ACF Enabl e register =)
CANDAT = CANDAT & OxFE; /* disabl e acceptance filter 1 of bankl */

/* Change filter configuration
In this re-configuration exanple all eleven bits of the CAN nessages
are used for nessage filtering. Only nessages with the CAN-ID: 301lhex
equal s 01100000001b are supposed to be received
The first two data bytes are not used for filtering and are set to

don’t care. */
CANADR = ACR10; /* set address to Acc. Code Register 0 (Bank 1) */
CANDAT = 0x60; /* bankl: ACRO used for filtering */
CANDAT = 0x20; /* bankl: ACRl only upper 4 bits used filtering */

/* bankl: acceptance code 2 don’'t care, not used */

/* bankl: acceptance code 3 don't care, not used */

CANADR = AMR10; /* set address to Acc. Mask Register 0 (Bank 1) */
CANDAT = 0x00; /* bankl: AMRO =]
CANDAT = OxOF; /* bankl: AMR1 only upper 4 bits used */
CANDAT = OxFF; /* bankl: AMR2 accept. mask 2 don’'t care */
CANDAT = OxFF; /* bankl: AVMR3 accept. mask 3 don’t care =)

/* Enabl e the changed Filter:

__________________________ * |
CANADR = ACFEN,; /* set address to ACF Enable register */
CANDAT = CANDAT | 0x01; /* enabl e acceptance filter 1 of bankl */

22

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.4 CAN Interrupts
The CAN controller of the P8xC591 has 8 different CAN interrupts, which may be used to initiate

immediate actions by the CPU on certain states of the CAN controller. The general interrupt flow in
Figure 3-9 gives an overview of all possible CAN interrupts. A CAN interrupt is generated when one or
more bits of the CAN Interrupt Register are set. It depends very much on the system and the requested
behaviour, in which order the interrupts are served.

Note that other routines might use the CANADR as well. If this register is modified within the ISR, it is
recommended to store the current CANADR value at the beginning of the interrupt service routine and
restore it at the end.

Examples for the reaction on transmission and reception interrupts are discussed in chapters 3.5.2 and
3.6.2. Detailed flows and examples for wake-up, data overrun, CAN error handling and arbitration lost
interrupt services are described in [4].

main flow: interrupt service routine

reception of messages
C Interrupt received)

| v

4 read Interrupt Register and
store temporarily
Interrupt Preparation +
enable global interrupt store CANADR value

enable CAN interrupt

v

enable interrupts

- Transmit Int. processing CAN wake-up

- Receive Int.

- Data Overrun Int. +

- Error Warning Int. processing CAN transmission see 3.5.2
- Error Passive Int.

- Bus Error Int. +

- Arbitration Lost Int.

- Wake-up Int. processing CAN reception see 3.6.2

v

| processing data overrun
! v
¢ processing CAN errors

v

processing arbitration lost

A

restore CANADR value

C end of interrupt processing)

Figure 3-9: General interrupt flow

23

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example ’C’ code - CAN Interrupt Service -

/* EE R S S S O S S S S O S O */

/* CAN Interrupt Service */
/* This function can be used as a general interrupt service. Al CAN */
/* interrupt sources of the P8xC591 are considered. Before a call to a */
/* certain sub process is perfornmed the contents of the interrupt reg. */

/* is saved. Additionally CANADR is tenporarily stored and restored. */
/* EIE R R R R I R R R I I R I R I R I R R R R I R R S I R R I I R R I I S R O S */
voi d ECAN int service(void) interrupt 13 using 3 /* high priority */
{
I nt errupt RegCopy = CANCON, /* read interrupt register */
CANADR_save = CANADR; /* save CANADR =)

/* CAN Transmit Interrupt ? */
if ((InterruptRegCopy & 0x02) == 0x02)

{
/* Transmit Interrupt Handling */

CAN Receive Interrupt ? */
((I'nterrupt RegCopy & 0x01) == 0x01)

_.\
= %

do {
RX_Service();
} while (RBS); /* Receive Buffer enpty ? */

Data Overrun Interrupt ? */

((Interrupt RegCopy & 0x08) == 0x08)

_.\
~——h

/* Data Overrun Handling */
}

/| * Error Interrupt ? */

if ((InterruptRegCopy & 0x04) == 0x04)
/* Error Handling */
}

| * Error Passive Interrupt ? */

if ((InterruptRegCopy & 0x20) == 0x20)
/* Error Passive Handling */

}

/* Bus Error Interrupt ? */

if ((InterruptRegCopy & 0x80) == 0x80)
/* Bus Error Handling */

/* Arbitration Lost Interrupt ? */
if ((InterruptRegCopy & 0x40) == 0x40)

/* Arbitration Lost Handling */
CANADR = CANADR save; /* restore CANADR */

[* ----- end of EXO_int_service ----- */

24

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.5 Transmission

A transmission of a message is done autonomously by the CAN controller according to the CAN protocol
specification. First, the CPU has to transfer the Transmit message into the Transmit Buffer and set the
"Transmission Request’ flag in the Command Register. The transmission process can be controlled either
by an interrupt request or by polling status flags.

3.5.1 Polling Controlled Transmission

As shown in Figure 3-10 the transmit interrupt of the CAN controller is disabled for this type of
transmission control. As long as the P8xC591 is transmitting a message, the Transmit Buffer is locked for
writing. Thus the CPU has to check the "Transmit Buffer Status’ flag (TBS) of the Status Register, if a new

message can be placed into the Transmit Buffer.

¢ The Transmit Buffer is locked:

Polling the Status Register periodically, the CPU waits, until the Transmit Buffer is released.

e The Transmit Buffer is released:

The CPU writes the new message into the Transmit Buffer and sets the flag "Transmission Request’
(TR) of the Command Register, which will cause the start of the transmission.

The CAN message is transmitted successfully when the Transmit Complete Status bit is set.

main flow:
transmit a message

disable CAN
Transmit Interrupt

run other tasks or
simply loop back

Transmit Buffer
Status released ?

write message into the
Transmit Buffer

v

set Transmission
Request bit

Transmit
Complete Status ?

Figure 3-10: Flow Diagram *Transmission of a message’ (polling controlled)

25

Philips Semiconductors

P8xC591 Microcontroller in

CAN Applications

Application Note
ANO00043

3.5.2

Interrupt Controlled Transmission

According to the main processing of the controller, the transmit interrupt of the CAN controller and the
global interrupt(s) of the P8xC591 must be enabled prior to the start of an interrupt controlled
transmission. The interrupt enable flags are located in the Interrupt Enable Register of the CAN
controller. As long as the P8xC591 is transmitting a message, the Transmit Buffer is locked for writing.
Thus the CPU has to check the "Transmit Buffer Status’ flag (TBS) of the Status Register, if a new message
can be placed into the Transmit Buffer. The procedure of writing a certain CAN message into the
Transmit Buffer and setting the Transmission Request is similar to the process described in the previous

chapter.

main flow:
transmit a message

‘

enable CAN
Transmit Interrupt

| TX_Service ()

Transmit Buffer
Status released ?

A

write message into the
Transmit Buffer

temporary buffer
for further
transmit messages

v

A

set Transmission
Request bit

set flag
‘further message’

Message has
high priority ?

YES

set 'Abort Transmission’

_<A

interrupt service routine:
transmit a message

CAN Transmit No
Interrupt ?

further message’ No

to be transmitted ?

Y

copy message from
temporary buffer into
Transmit Buffer

clear 'further messages’

No

Transmit
Complete Status
= complete ?

YES
A

set Transmission
Request bit

set Transmission
Request bit

A 4
application specific
processing
"Abort Transmission’

T A

Figure 3-11: Example Flow Diagram *Transmission of a message’ (interrupt controlled)

The diagram in Figure 3-11 shows the standard flow of interrupt controlled message transmission.

26

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Figure 3-11 also includes a solution for scheduling transmit messages that cannot be transmitted because
the Transmit Buffer is not released. In this case the ‘abort transmit’ function of the CAN controller is
used.

e The Transmit Buffer is locked:

In case of the Transmit Buffer is locked, the CPU has to store the new message temporarily in the
data memory and sets a software flag 'further message', indicating that a further message is waiting for
transmission.

The start of a next transmit message will in this case be handled during the interrupt service routine,
which is initiated at the end of the current running transmission. Upon reception of an interrupt
from the CAN controller, the CPU checks the type of interrupt, see also Figure 3-9. In case of a
Transmit Interrupt and the 'further message' flag is set, the waiting message has to be copied from the
data memory into the Transmit Buffer and the 'further message' flag is cleared. The "Transmission
Request' flag of the Command Register is set, which will cause the CAN controller to start the
transmission.

e The Transmit Buffer is released:

The CPU writes the new message into the Transmit Buffer and sets the flag "Transmission Request',
which will cause the P8xC591 to start the transmission. At the end of a successful transmission, the
CAN controller generates a Transmit Interrupt.

3.5.2.1 Abort Transmission

The transmit request of a message, may be aborted using the 'Abort Transmission' command by setting
the corresponding bit in the Command Register. This feature of the P8xC591 CAN controller may be
used, e.g., for transmitting an urgent message prior to the message, which has been written into the
transmit buffer previously and was not transmitted successfully until now.

Figure 3-11 shows a flow using the transmit interrupt. It illustrates the situation, where a message has to be
aborted in order to transmit a message with a high priority. Other reasons for aborting a message may
require different interrupt flows.

In case a transmit message is still waiting for being served due to different reasons, the Transmit Buffer is
locked (see also Figure 3-11). If a transmission of an urgent message is requested, the Abort Transmission
bit is set in the Command Register.

When the message waiting to be served has either been transmitted successfully or aborted, the Transmit
Buffer is released and a Transmit Interrupt is generated. During the interrupt processing the Transmission
Complete flag of the Status Register has to be checked, whether a previous transmission was successful or
not. The status 'incomplete' indicates, that the transmission was aborted. In this case the CPU can run
through a special routine dealing with a strategy for abort transmission, e.g., repeat the transmission of the
aborted message.

A 'C' code example for the TX_Service routine which can be used for both polling and interrupt
controlled transmission is given on the next page.

27

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example 'C' code - TX_Service —

/* EEEEEEEE SRR EEEEEEEREEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEESEEEEEEEEEEESEESESES */

/| * Transmit Service Function */
/* This function assunes that a CAN transmt nessage is already */
/* available in the RAM space of the M crocontroller beginning at */
/[* Transm t Message[0]. The order of the transmit bytes are organi zed as */
/* described in the Transmt Buffer chapter of the data sheet. */

/* EEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEESEEEEEEEEEEEEEESEEEEEEEEEEEEEESESES */

void TX Service (BYTE *Transmit Message)

{
BYTE Lengt h; /* CAN Data Length Code */
BYTE i; /* index */
bi t FF; /* FF = 0 (Standard CAN Frane) */
/* FF = 1 (Extended CAN Frane) */
if (TBS == 1) /* Transmit Buffer Status = rel eased ? */
{
/* wite nessage into the Transnit Buffer */
FF = Transm t Message[0] & 0x80; /* get Frame For mat */
Length = Transm t Message[0] & OxOF; /* get DLC */
if (Length > 0x08)
Lengt h = 0x08;
CANADR = TBF; /* point to 591 TX Buffer */
CANDAT = Transm t Message| 0] ; /[* wite TX Frane Information */
CANDAT = Transmi t Message[1] ; /* wite TX Identifier 1 */
CANDAT = Transm t Message| 2] ; [* wite TX Identifier 2 */
if (FF)
/* Extended Frane Message */
CANDAT = Transm t Message[3] ; /* wite TX Identifier 3 */
CANDAT = Transm t Message| 4] ; /* wite TX Identifier 4 */
}
for (i=0; i<Length; i++) /* wite data bytes */
{
if (FF)
CANDAT = Transmni t Message[i +5] ;
el se
CANDAT = Transm t Message[i +3] ;
}
/* set Transm ssion Request bit */
CANCON = 0x01;
}
el se
/* P8xC591 transmit buffer is not rel eased */
/* run other tasks or call function again */
}
}

28

Philips Semiconductors

P8xC591 Microcontroller in
CAN Applications

Application Note
ANO00043

3.6 Reception

3.6.1

Polling Controlled Reception

A typical flow for polling controlled reception is shown in Figure 3-12. The Receive Interrupt of the CAN
controller is disabled for this type of reception control. The CPU reads the Status Register of the CAN
controller on a regular basis, checking if the Receive Buffer Status flag (RBS) indicates, that at least one
message has been received.

The Receive Buffer Status flag indicates ’empty’, i.e., no message has been received:

The CPU continues with the current task until a new request for checking the Receive Buffer Status is

generated.

The Receive Buffer Status flag indicates "full’, i.e., one or more messages have been received:

The CPU gets the first message from the CAN controller and sets the Release Receive Buffer flag in
the Command Register. The CPU can process each received message before checking for further
messages, as indicated in Figure 3-12.
But it is also possible to download all messages into the data memory by polling the Receive Buffer
Status bit again and process all received messages together later. In this case the data memory has to be
large enough to store more than one message before they are processed.
After transferring and processing one or all messages, the CPU can continue with other tasks.

request:
check for received messages

;l
-

Receive Buffer
Status = full ?

<—-

continue with
other tasks

read new message from
Receive Buffer and save it

A

release Receive Buffer
(set command bit RRB = released)

A

application specific
processing
e.g. process received message

A

Figure 3-12: Flow Diagram ’Reception of a message’ (polling controlled)

29

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.6.2 Interrupted Controlled Reception

According to the main processing of the controller as given in Figure 3-13, the receive interrupt of the
CAN controller and the global interrupt(s) of the P8xC591 must be enabled prior to an interrupt
controlled reception of messages. The receive interrupt enable flag is located in the Interrupt Enable
Register.

main flow: interrupt service routine:
reception of messages reception of messages

I define I
| Receive Interrupt Level and |
L Acceptance Filter Priority I

EE

enable CAN > YES
Receive Interrupt

!

CAN Receive
Interrupt ?

RX_Service ()

A 4

read new message from Receive
Buffer and save it

A 4

release Receive Buffer
(set command bit RRB = released)

A 4

application specific
processing
e.g. process received message

Receive Buffer

Status = empty ? optional

Figure 3-13: Flow Diagram ’Reception of a message’ (interrupt controlled)

If the P8xC591 has received a message, which has passed the acceptance filter and has been placed into the
Receive FIFO, a receive interrupt is generated. Thus the CPU can react immediately, transferring the
received message into its message memory and sets the Release Receive Buffer flag ’RRB’ in the Command
Register. Further messages in the Receive FIFO will generate a new receive interrupt, so it is not necessary
to read all messages available in the Receive FIFO during one interrupt. Nevertheless, at the end of
processing the receive interrupt, the CPU can check for further messages by reading the Receive Buffer
Status flag (RBS). This option is always useful when the Receive Level Interrupt is used, see also chapter
3.6.4. As given in Figure 3-13, the whole reception process may be done during the interrupt service
routine without interaction of the main program.

30

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example 'C' code - RX_Service —

/* EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEESEEEEEEEEEEESEESESES */

| * Receive Service Function */
/* This function is used to copy a CAN nessage fromthe Receive Fl FO */
/* into the microcontroller menory space starting at Recei veMessage[0]. */
/* The function allows automatic nessage | ength handling by using DLC */
/* and automatic detection of 11 or 29-bit CAN nmessages. */

/* EE R S S S S S S I S S S */

voi d RX Service ()

{
BYTE Lengt h; /* CAN Data Length Code */
BYTE i; /* i ndex =]
bi t FF; /* FF = 0 (Standard CAN Frane) */
/* FF = 1 (Extended CAN Frane) */
/* read new nessage from Receive Buffer and store it */
CANADR = RBF; /* point to 591 RX Buffer =)
Recei veMessage[0] = CANDAT; /* read and store Frame Info Byte */
FF = Recei veMessage[0] & 0x80; /* get Frane For mat */
Length = Recei veMessage[0] & OxOF; /* get DLC */
if (Length > 0x08)
Lengt h = 0x08;
Recei veMessage[1] = CANDAT; /* read and store RX Identifier 1 */
Recei veMessage[2] = CANDAT; /* read and store RX lIdentifier 2 */
if (FF)
{
Recei veMessage[3] = CANDAT; /* read and store RX Identifier 3 */
Recei veMessage[4] = CANDAT; /* read and store RX lIdentifier 4 */
}
for (i=0; i<Length; i++) /* read and store data bytes */
if (FF)
Recei veMessage[i +5] = CANDAT;
el se
Recei veMessage[i +3] = CANDAT;
}

/* rel ease Receive Buffer */
CANCON = 0x04;

3.6.3 Data Overrun Handling

In case the Receive FIFO is full but another message is being received, a Data Overrun is signalled to the
CPU by setting the Data Overrun Status in the Status Register. If enabled, a Data Overrun Interrupt is
generated. A reason for running into a Data Overrun situation could be, that the CPU is extremely
overloaded and has no time to fetch received messages from the Receive Buffer in time. Normally a system
should avoid Data Overrun conditions. If Data Overrun situations cannot be avoided an application
specific 'Data Overrun strategy’ should be implemented, e.g., requesting important messages. However,
upon Data Overrun, the Receive FIFO must be read out and released for new messages. Finally the ‘Clear
Data Overrun’ command has to be given to terminate this status.

31

Philips Semiconductors

P8xC591 Microcontroller in
CAN Applications

Application Note
ANO00043

3.6.4 Receive Interrupt - Level or High Priority

The user can define a Receive Interrupt Level for reception. The default value for RIL is ‘00’. In this case,
every valid CAN message that has passed the acceptance filter generates an interrupt for the CPU, if the

receive interrupt is enabled.

The interrupt behaviour is different if the user specifies a certain level within the Receive Interrupt Level
Register (RIL). As soon as the specific amount of bytes is stored in the RXFIFO and the last message has a

valid status a receive interrupt is generated. As described in chapter 3.3.1 the acceptance filter priority

register must be configured for Rx Level Interrupt generation.

Example: RIL = 0x14 (20d)

Receive
Interrupt

4

RIL = 20

23
CAN Message with
2 Data Bytes 3
18
O
&
CAN Message with 2
8 Data Bytes A
7 L
CAN Message with 1]
4 Data Bytes L
0 L

Acceptance Filter
Priority = low
for messages 1,2,3

(o}
&
&
Receive
Interrupt
7 é
1

Acceptance Filter
Priority = high
for message 1

Figure 3-14: Receive Interrupt Level Example

To support message reception of high priority messages the user can define the priority for a certain
message within the acceptance filter priority register ACFPRIO. As soon as a CAN message passes a ‘high-
priority” acceptance filter (ACFPRIO.x = 1), a receive High Priority Interrupt is generated immediately

upon complete reception, regardless of the value of the RIL register, see Figure 3-14.

32

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example ’C’ code - Receive Interrupt Level -

/* EE R R b S R I I R S I I R I I S I */
| * Receive Interrupt Level */
/* This part of the initialisation shows how a Receive |Interrupt Level */
/* can be defined. This includes also the definition of the acceptance */
[* filter priority. */

/* EEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEESEEREREEEEEESEEEESEEEEEEEEEEESEESESES */

void init can_controller (void)

{
/* Enter CAN Controller Reset Mde

_______________________________ *
CANMOD = 0x01; /* set the CAN controller to reset node */
.C.ANADR = RIL;

CANDAT = 0x14; /* define receive interrupt |evel at 20d */
/* Bank 1 */
CANADR = ACR10; /* Accept ance Code Register O */
CANDAT = O0OxAO0;
};‘ Bank 2 */
CANADR = ACR20; /* Accept ance Code Register 0O */
CANDAT = 0xBO;
CANADR = ACFMOD; /* point to ACF Mbde register */
CANDAT = 0x05; /* single filter for standard CAN frames */
/* for bankl and bank 2 */
CANADR = ACFPRIO; /* point to ACF Priority register */
CANDAT = 0x04; /* low priority for filter 1 of bankl */
/* high priority for filter 1 of bank2 */
CANADR = ACFEN; /* point to ACF Enabl e register */
CANDAT = 0x05; /* enabl e acceptance filter 1 of bankl */
/* enabl e acceptance filter 1 of bank2 */
/* Exit CAN controller Reset Mde
___________________________________ *
CANMOD = 0x00; /* set the CAN controller into */
/* operating node */

33

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.7 Automatic Bit-rate Detection

The major drawback of existing trial and error concepts for automatic bit-rate detection is the generation
of CAN error frames, which is not acceptable.

The CAN controller of the P8xC591 supports the requirements for automatic bit-rate detection with a
unique "Listen Only Mode’ feature. In this mode the CAN controller does not generate error frames, only
message reception is possible (true monitor function). This section briefly describes an application example
without influencing running operations on the network. It requires that at least one node is actually
sending CAN messages on the network. The number of messages needed to successfully detect the bit-rate
varies depending on several factors, for example the initial test bit-rate and CAN bus load.

For automatic bit-rate detection a pre-defined table within the software contains all possible bit-rates
including their bit-timing parameters [3]. Before starting message reception with the highest possible bit-
rate, both the receive interrupt and the bus error interrupt are enabled. As soon as bus errors are detected
the next lower bit-rate is selected. Whenever a receive interrupt occurs, the correct bit-rate is found. Now
the device can be switched into Operating Mode. For verification purposes a 2" CAN message should be
received. From now on the CAN controller can participate on network communication. The example *C’
code listed on the next pages uses the initialisation from chapter 3.2.

C unknown bit-rate)

v

Enter Reset Mode

Set highest CAN bit-rate

Enable Bus Error and
Receive Interrupt

Enter Listen Only Mode

-l
-
) 4

YES

Bus Error Interrupt ?

Enter Reset Mode

v

switch to next lower bit-rate

v

Enter Listen Only Mode

Release Receive Buffer |
Enter Operating Mode

Receive Interrupt ?

No optional

Receive Interrupt ?

C bit-rate found)

Figure 3-15: Algorithm of CAN Bit-rate Detection

34

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Example ’C’ code - Automatic Bit-rate Detection -

void auto_bit rate detection (void)

{

/* d obal configurations:

*
______________________ /
EA = 1; /* enabl e gl obal interrupt */
ECAN = 1; /* enabl e CAN interrupt */
CANSTA = 0x81; /* enabl e Receive & Bus Error Interrupts =)

I nt er rupt RegCopy = 0x00; /* Buffer to store values of the
CAN Interrupt Register during the ISR */

try = 1; /* Counter for bit-rate configurations */
bi tratefound = 0; /* bit-rate found flag */
errcnt = 0; /* bus error counter =]

initialise_can_controller (); /* CAN Controller initialisation with
hi ghest bit-rate & Listen Only Mdde */

/* CAN Controller starts with highest bit-rate

___ * |
do {
if ((Interrupt RegCopy & 0x80) == 0x80) /* bus error interrupt */
{
if (errcnt == error_nmax) /[* if error_max bus errors have */
{ /* been detected switch to next */
try++; /* lower bit-rate */
change_bit_rate (try); /* change to lower bit-rate */
errcnt = 0; /* Clear bus error counter =)
if (try == 8) /* if end of bit-rate table is */
try = 1; /* reached, restart trial =]
CANADR = ECC; /* read error code capture and */
tenp_regl = CANDAT; /* enabl e for next bus error */
I nt errupt RegCopy = 0x00; /* Clear |nterruptRegBuffer */
}
if ((InterruptRegCopy & 0x01) == 0x01) /* receive interrupt */
{
bi trat efound = 1; /* Set bitratefound flag =]
I nt er rupt RegCopy = 0x00; /* O ear |InterruptRegBuffer */
/* clear Rx interrupt */
} while (bitratefound == 0); /* wait until bit-rate is found */
/* CAN Controller has detected the CAN systembit-rate
___ */
CANMOD = 0x01; /* CAN contr. = reset npde =]
CANMOD = 0x00; /* CAN contr. = operating node */

/* CAN Controller is waiting for 2nd CAN frame (optional)
___ * [

do { } while ((Interrupt RegCopy & 0x01) != 0x01);

} /* End of bit-rate detection */

35

Philips Semiconductors

P8xC591 Microcontroller in

Application Note

CAN Applications ANO00043
Subroutine ’change_bit_rate’
voi d change_bit_rate (unsigned int tryl)
{ /* CAN Bit Rate Tabl e:
___________________ * [
CANMOD = 0x01; /* CAN controller = reset npde */

switch (tryl)

{ /* Not e:

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

CANADR
CANDAT
CANADR
CANDAT
br eak;

br eak;

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

def aul t :

Maxi mum osci | |l ator tol erance for each CAN node
0.1%
The followi ng bus timng parameters for the
P8xC591 are based on XTAL=12MHz.

is +/ -

BTRO;
0x40;
BTR1;
0x18;

BTRO;
0x40;
BTR1;
0x1B;

BTRO;
0x41;
BTR1;
0x18;

BTRO;
0x42;
BTR1;
0x2B;

BTRO;
0x45;
BTR1;
0x2B;

BTRO;
0x4B;
BTR1;
0Ox2F;

BTRO;
0x5D;
BTR1;
Ox2F;

BTRO;
0x7B;
BTR1;
0Ox2F;

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*

CAN Bit Rate 1000 kbit/s,
SIW2, BRP=1

SP=83. 3% NBT=12

SAMEO, TSEGL=9, TSE&=2

CAN Bit Rate 800 kbit/s,
SIW2, BRP=1

SP=86. 6% NBT= 15

SAMEO, TSEGL=12, TSEG2=2
CAN Bit Rate 500 kbit/s,
SIW2, BRP=2

SP=83. 3% NBT= 12

SAM=0, TSEGL=9, TSE&2=2
CAN Bit Rate 250 kbit/s,
SIWE2, BRP=3

SP=81. 3% NBT= 16

SAM=0, TSEGl=12, TSE&2=3
CAN Bit Rate 125 kbit/s
SIWE2, BRP=6

SP=81. 3% NBT= 16

SAM=0, TSEGL=12, TSE&2=3
CAN Bit Rate 50 kbit/s,
SIWE2, BRP=12

SP=85% NBT= 20

SAM=0, TSEGL=16, TSE&=3
CAN Bit Rate 20 kbit/s,
SIWE2, BRP=30

SP=85% NBT= 20

SAM=0, TSEGL=16, TSE&=3
CAN Bit Rate 10 kbit/s,
SIW2, BRP=60

SP=85% NBT= 20

SAMEO, TSEGL=16, TSEG2=3

*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

36

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

Interrupt Service Routine

/* EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEESEEEEEEEEEEESEESEESES */

/* PROC : ECAN_ i nt _service */

/* EEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEESEEEEEEEEEEEEEESEEEEEEEEEEEEESESES */

voi d ECAN i nt _service(void) interrupt 13 using 3 /* CAN | SR */

{
I nt err upt RegCopy = CANCON; /* Store values frominterrupt register */

if ((Interrupt RegCopy & 0x80) == 0x80)

{
errcnt ++; /* error counter is increnented */
if (errcnt == error_max)
CANMOD = 0x01; /* Reset Mbde */
}
)
if ((InterruptRegCopy & 0x01) == 0x01)
{
CANCON = 0x04; /* Rel ease Recei ve Buffer */
}
Yoo - End of CAN ISR ----- */

37

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

3.8 CAN Controller Self Tests
The CAN controller of the P8xC591 supports two different options for self tests:

* Global Self Test (setting the self reception request bit in normal Operating Mode)
* Local Self Test (setting the self reception request bit in Self Test Mode)

3.8.1 Global Self Test

A global self test is always performed in a running system. Figure 3-16 shows that at least one other CAN
node must be connected onto the bus for giving an acknowledge.

This feature of the P8xC591 CAN controller is intended to be used, e.g., to verify proper operation of a
certain CAN node within a system.

TX Buffer
N
N [v
P8xC591 Transceiver L
{f T=
™ ack
RX Buffer 4

Figure 3-16: Global Self Test

As shown in the following ’C’ code example the initiation of a global self test is similar to starting a normal
CAN transmission. However, in this case the transmit message is also received and stored in the receive
buffer of theP8xC591. Note that the acceptance filters have to be configured to receive this CAN message.

/* dobal Self Test */
CANADR = TBF; /* point to 591 TX Buffer =)
CANDAT = Transm t Message|[0] ; /[* wite TX Frane Information */
CANDAT = Transm t Message|[1] ; [* wite TX Identifier 1 */
CANDAT = Transni t Message[2] ; /* wite TX Identifier 2 */
.C.Ai\ICON = 0x10; /* Self Reception Request */

Similar to the TX_Service routine presented in chapter 3.5, first the transmit buffer is loaded followed by
the Self Reception Request command.

As soon as the CAN frame is transmitted completely, both a transmit interrupt and a receive interrupt are
generated, if enabled.

38

Philips Semiconductors

P8xC591 Microcontroller in
CAN Applications

Application Note
ANO00043

3.8.2 Local Self Test

A local self test, e.g., can be used perfectly for single node tests because an acknowledge from other nodes is
not needed. In this case the CAN controller has to be in ’Self Test Mode’. Note that a physical layer
interface must be available including a CAN bus line and a termination network as shown in Figure 3-17.

Entering the Self Test Mode is possible only if the Reset Mode is entered previously.

As already described for the global self test, the transmission is also started with the Self Reception Request

TX Buffer

P8xC591

Transceiver

RX Buffer

Figure 3-17: Local Self Test

command (see 'C’ code example).

/* Local Self

Test

CANMOD =
CANMOD =

CANADR
CANDAT
CANDAT
CANDAT

CANCON

0x01;
0x04;

TBF;

Transm t Message[0] ;
Transm t Message[1] ;
Transm t Message[2] ;

0x10;

/* Enter Reset Mbde
[* Enter Self Test Mbde

/* point to 591 TX Buffer
/* wite TX Franme | nformation
/[* wite TX Identifier 1
/[* wite TX |dentifier 2

/* Sel f Reception Request

*/

*/
*/

*/
*/
*/
*/

*/

39

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

4. REFERENCES

(1]
(2]
3]

Data Sheet P8xC591, Philips Semiconductors, 2000
CAN Specification Version 2.0, Parts A and B, Philips Semiconductors, 1992

Johnk, E. and Dietmayer, K.: Application Note: Determination of Bit Timing Parameters for
the CAN Controller SJA1000, Philips Semiconductors, 1997

Hank, P. and J6hnk, E.: Application Note: SJA 1000 Stand-alone CAN Controller, Philips

Semiconductors, 1997
Data Handbook IC28: 80C51 and XA Microcontrollers, 2000

Data Handbook IC18: Semiconductors for In-Car Electronics, SJA1000 - Stand-alone CAN
controller, 2000

DeviceNet Protocol Specification Version 2.0, Open DeviceNet Vendors Association,1997

40

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

5. APPENDIX

/**/

/* */
/* Project : P8xC591 Application Note ANO0043 */
/* Aut hor: Hartnut Habben PHI LIPS Seni conductors -SLHanburg */
[* */
/* TITLE: Definition for the CAN controller of the P8xC591 */
/* */
/* 1. Nanme: C591 _def.h */
/* */
[* 2. Modi fication History: */
/* H. Habben, June 27, 2000 #1. 000, initial version */
/* */
/* 3. NOTI CE: Copyright (C) 2000 PHI LIPS Sem conductors */
[* */
/* 4 Bui | d Environment: */
/* Kei |l Software Devel opnent Tools for 8051, C51, version 5.20 */
[* */

/**/

#define RIL 0x05 // Receive Interrupt Level
#defi ne BTRO 0x06 // Bus Timing O

#define BTRL 0x07 // Bus Tinming 1

#defi ne RMC 0x09 // Receive Message Counter
#defi ne RBSA OxOA // Receive Buffer Start Address
#define ALC Ox0B // Arbitr. Lost Capture
#defi ne ECC 0x0C // Error Code Capture
#define EWLR O0xOD // Error Warning Limt

#defi ne RXERR OxOE // Rx Error Counter

#defi ne TXERR OxOF // Tx Error Counter

#defi ne ACFMOD 0x1D // ACF Mode

#defi ne ACFEN Ox1E // ACF Enable

#defi ne ACFPRI O Ox1F // ACF Priority

#defi ne ACR10 0x20 // Acceptance Code 0 (Bank 1)
#defi ne AVR10 0x24 |/ Acceptance Mask O (Bank 1)
#defi ne ACR20 0x28 [// Acceptance Code 0 (Bank 2)
#defi ne AVR20 0x2C [// Acceptance Mask O (Bank 2)
#defi ne ACR30 0x30 // Acceptance Code 0 (Bank 3)
#defi ne AMR30 0x34 // Acceptance Mask 0 (Bank 3)
#defi ne ACR40 0x38 [// Acceptance Code 0 (Bank 4)
#defi ne AVR40 0x3C // Acceptance Mask 0 (Bank 4)
#defi ne RBF 0x60 // Receive Buffer

#defi ne TBF 0x70 // Transmit Buffer

/* local type definition */
#defi ne BYTE unsi gned char

#defi ne WORD unsi gned i nt

#defi ne DWORD unsi gned | ong

4|

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043
/**/
/* */
/* Project : P8xC591 Application Note ANO0043 */
/* Aut hor: Hartnut Habben PHI LIPS Sem conductors -SLHanburg */
/* */
/* TITLE: Header file with Special Function Register Declarations */
/* for the Philips P8xC591 CAN M crocontroller */
/* */
[* 1. Nanme: REG591.h */
/* */
[* 2. Modi fication History: */
/* H. Habben, June 27, 2000 #1. 000, initial version */
/* */
/* 3 NOTI CE: Copyright (C 2000 PHI LIPS Sem conductors */
/* */
/* 4 Bui | d Environnent: */
/* Kei|l Software Devel opnment Tools for 8051, C51, version 5.20 */
/* */

/**/

/* BYTE Register */

sfr PO = 0x80; // Port O

sfr P1 = 0x90; // Port 1

sfr P2 = OxA0; // Port 2

sfr P3 = 0xB0O; // Port 3

sfr PSW = 0xDO; // Program Status Word
sfr ACC = OxEO; // Accunul ator

sfr AUXR = Ox8E; // Auxiliary

sfr AUXRL = OxA2; // Auxiliary

sfr B = OxFO; // B register

sfr SP = 0xB9; // Stack Pointer

sfr DPL = 0x82; // Data Pointer High

sfr DPH = 0x83; // Data Pointer Low

sfr PCON = 0x87; // Power Control

sfr TCON = 0x88; // Tinmer Control

sfr TMOD = 0x89; // Tiner Nbde

sfr TLO = Ox8A; // Tinmer Low O

sfr TL1 = 0x8B; // Tiner Low 1

sfr THO = 0x8C; // Tinmer Hgh O

sfr THL = 0x8D; // Timer Hgh 1

sfr | ENO = OxA8; // Interrupt Enable O

sfr | EN1 = OxE8; // Interrupt Enable 1

sfr 1PO = 0xB8; // Interrupt Priority O
sfr IPOH = 0xB7; // Interrupt Priority O high
sfr IP1 = OxF8; // Interrupt Priority 1
sfr IPIH = OxF7; // Interrupt Priority 1 high
sfr SOADDR = OxCB; // Serial 0 Sl ave Address
sfr SOADEN = OxF9; // Serial 0 slave Address Mask
sfr SOCON = 0x98; // Serial 0 Control

sfr SOBUF = 0x99; // Serial 0 Data Buffer
sfr SIADR = 0OxDB; // Serial 1 Address

sfr S1ISTA = 0xD9; // Serial 1 Status

sfr SICON = 0xD8; // Serial 1 Control

sfr SIDAT = OxDA; // Serial 1 Data

42

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043

sfr ADCON = 0xC5; // A/ D Control

sfr ADCH = 0xC6; // A/ D Converter high

sfr CTCON = OxEB; // Capture Control

sfr CTH3 = OxCF; // Capture high 3

sfr CTH2 = OxCE; // Capture high 2

sfr CTH1 = OxCD; // Capture high 1

sfr CTHO = OxCC;, // Capture high O

sfr CVH2 = 0OxCB; // Conpare high 2

sfr CVHL = OxCA; // Conpare high 1

sfr CVHO = 0xC9; // Conpare high 0

sfr CTL3 = OxAF; // Capture |low 3

sfr CTL2 = OxAE; // Capture |low 2

sfr CTL1 = OXAD; // Capture low 1

sfr CTLO = OXAC;, // Capture low O

sfr CM.2 = OxAB; // Conpare |ow 2

sfr CM.1 = OxAA; // Conpare low 1

sfr CMLO = OxA9; // Conpare low 0

[* e CAN Speci al Function Registers ------- */

sfr CANADR = OxCl; // CAN Address

sfr CANDAT = 0xC2; // CAN Data

sfr CANMOD = OxC4; // CAN Mode Regi ster

sfr CANSTA = OxCO; // CAN Status [/ Interrupt Enable

sfr CANCON = 0xC3; // CAN Conmand / Interrupt Register

/* ___ */

sfr P1ML = 0x92; // Port 1 output node 1

sfr P1IMR = 0x93; // Port 1 output nbde 2

sfr P2ML = 0x94; // Port 2 output node 1

sfr P2M2 = 0x95; // Port 2 output node 2

sfr P3ML = 0x94; // Port 3 output nbde 1

sfr P3M2 = 0x95; // Port 3 output node 2

sfr PWWP = OxFE; // PWM Prescal er

sfr PAWPL = OxFD; // PWM Register 1

sfr PWPO = OxFC, // PWM Register 0O

sfr RTE = OxEF; // Reset Enable

sfr STE = OxEE; // Set Enable

sfr TMH2 = OxED; // Tinmer high 2

sfr TM.2 = OxEC;, // Tinmer low 2

sfr TMIR = 0OxC8; // Timer 2 Int Flag Reg

sfr T3 = OxFF; // Tinmer 3

43

Philips Semiconductors

P8xC591 Microcontroller in

CAN Applications

Application Note
ANO00043

/* PSW
shit CY

shit AC

shit FO

shit RS1
shit RSO
shit OV

shit F1

shit P

/* TCON
shit TF1
shit TR1
shit TFO
shit TRO
shit IE1
shit IT1
shit I EO
shit ITO

/* 1ENO
shit EA

shit EAD
shit ES1
shit ESO
shit ET1
shit EX1
shit ETO
shit EXO

/* 1 ENL

shit ET2

shit ECAN
shit ECML
shit ECMD
shit ECT3
shit ECT2
shit ECT1
shit ECTO

/* 1PO

shit PAD
shit PS1
shit PSO
shit PT1
shit PX1
shit PTO
shit PX0

*/
0xDv7;
0xDe6;
0xD5;
0OxD4;
0xDg3;
0xD2;
0xD1;
0xDO;

*/
Ox8F;
Ox8E;
0x8D;
0x8C;
0x8B;
Ox8A;
0x89;
0x88;

*/
OxAF;
OXAE;
OxAD,;
OXAC;
OXxAB;
OxAA;
OxA9;
OxAS8;

*/
OXEF;
OXEE;
OXED;
OxEC,
OXEB;
OXEA,;
OxE9;
OXES;

*/

OxBE;
0xBD;
0xBC;
0xBB;
OxBA;
0xB9;
0xBS8;

BI T addressabl e regi sters

/*

shit
shit
shi t
shit
shit
shit
shit
shit

/*

shit
shit
shit
shit
shit
shit
shit
shit

/*

shit
shit
shit
shit
shit
shit
shit
shit

/*

shit
shit
shit
shit
shit
shit
shit
shit

/*

shit
shit
shit
shit
shit
shit
shit
shit

I P1 */
PT2 = OxFF;
PCAN = OxFE;
PCML = OxFD;
PCMD = OxFC,
PCT3 = OxFB;
PCT2 = OxFA;
PCT1 = OxF9;
PCTO = OxFS;

P1 */
P1 7 = 0x97;
P1_6 = 0x96;
P1 5 = 0x95;
P1 4 = 0x94;
P1_3 = 0x93;
P1 2 = 0x92;
P1_1 = 0x91;
P1_0 = 0x90;

P2 */
P2 7 = OxAT7;
P2 6 = 0xA6;
P2_5 = OxA5;
P2 4 = O0xA4;
P2 3 = 0xA3;
P2_2 = OxA2;
P2 1 = OxAL;
P2_0 = OxAO0;

P3 */
P3_7 = 0xB7;
P3 6 = 0xB6;
P3 5 = 0xBS5;
P3_4 = 0xB4;
P3 3 = 0xB3;
P3_2 = 0xB2;
P3_1 = 0xBi;
P3 0 = 0xBO;

P3 alternate f
rd = 0xB7;
wWr = 0xBS6;
T1 = 0xB5;
TO = 0xB4;
intl = 0xB3;
int0 = 0xB2;
TXD = 0xB1;
RXD = 0xBO;

unctions */

44

Philips Semiconductors

P8xC591 Microcontroller in Application Note
CAN Applications ANO00043
/* SOCON */ /* TMRIR */
shit SMD = O0x9F; shit T20v = OxCF;
shit SML = 0x9E; shit CM 2 = OxCE;
shit SMe = 0x9D; shit CM 1 = 0xCD;
shit REN = 0x9C; shit CMO = 0xCC;
shit TB8 = 0x9B; shit CTI3 = 0xCB;
shit RB8 = 0Ox9A; shit CTI2 = OxCA;
shit TI = 0x99; shit CTI1 = 0xC9;
shit R = 0x98; shit CTIO = 0xC8;
/* S1CON */ /* CANSTA */
/* (READ) */
shit CRO = 0xDs8; shit BS = OxC7;
shit CR1 = 0xD9; shit ES = 0xC6;
shit AA = OxDA; shit TS = 0xC5;
shit Sl = 0xDB; shit RS = 0x4;
shit STO = 0xDC; shit TCS = 0xC3;
shit STA = 0xDD; shit TBS = 0xC2;
shit ENS1 = OxDE; shit DGCS = OxC1;
shit CR2 = OxDF; shit RBS = 0xCO0;
/* Accumul ator */ /* (VRITE) */
shit ACC 7 = OxET7; shit BEIE = 0xC7;
shit ACC 6 = OxE®6; shit ALIE = 0xCs;
shit ACC 5 = OxES5; shit EPIE = 0xC5;
shit ACC 4 = OxE4; shit WU E = 0xC4;
shit ACC 3 = OxE3; shit DA E = 0xC3;
shit ACC 2 = OxE2; shit EIE = 0xC2;
shit ACC 1 = OxE1; shit TIE = OxC1;
shit ACC 0 = OxEQ; shit RIE = 0xQ0;

45

