P4C1681, P4C1682 ULTRA HIGH SPEED 4K x 4 STATIC CMOS RAMS ## **FEATURES** - Full CMOS, 6T Cell - High Speed (Equal Access and Cycle Times) - 12/15/20/25 ns (Commercial) - 20/25/35ns (P4C1682 Military) - **■** Low Power Operation (Commercial) - 715 mW Active 12, 15 - 550 mW Active 20/25/35 - 193 mW Standby (TTL Input) - 83 mW Standby (CMOS Input) - Single 5V ± 10%Power Supply - Separate Inputs and Outputs - P4C1681 Input Data at Outputs during Write - P4C1682 Outputs in High Z during Write - **■** Fully TTL Compatible Inputs and Outputs - Standard Pinout (JEDEC Approved) - 24-Pin 300 mil DIP - 24-Pin 300 mil SOIC - 24-Pin 300 mil SOJ - 24-Pin CERDIP - 28-Pin LCC (450 mil x 450 mil) ## **DESCRIPTION** The P4C1681 and P4C1682 are 16,384-bit (4K x 4) ultra high speed static RAMs similar to the P4C168, but with separate data I/O pins. The P4C1681 features a transparent write operation; the outputs of the P4C1682 are in high impedance during the write cycle. All devices have low power standby modes. The RAMs operate from a single $5V \pm 10\%$ tolerance power supply. Access times as fast as 12 nanoseconds are available, permitting greatly enhanced system operating speeds. CMOS is used to reduce power consumption to a low 715 mW active, 193 mW standby. For the P4C1682 and P4C1681, power is only 83 mW standby with CMOS input levels. The P4C1681 and P4C1682 are available in 24-pin 300 mil DIP and SOIC packages providing excellent board level densities. The P4C1682 is also available in a 28-pin LCC package. ## **FUNCTIONAL BLOCK DIAGRAM** ## PIN CONFIGURATIONS Means Quality, Service and Speed # MAXIMUM RATINGS¹ | Symbol | mbol Parameter Value | | | | | | |-------------------|---|---------------------------------|----|--|--|--| | V _{cc} | Power Supply Pin with Respect to GND | -0.5 to +7 | V | | | | | V _{TERM} | Terminal Voltage with
Respect to GND
(up to 7.0V) | -0.5 to
V _{cc} +0.5 | V | | | | | T _A | Operating Temperature | -55 to +125 | °C | | | | | Symbol | Parameter | Value | Unit | |-------------------|---------------------------|-------------|------| | T _{BIAS} | Temperature Under
Bias | -55 to +125 | °C | | T _{STG} | Storage Temperature | -65 to +150 | °C | | P _T | Power Dissipation | 1.0 | W | | I _{OUT} | DC Output Current | 50 | mA | # RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE | Grade(2) | Ambient
Temperature | GND | V _{cc} | | |------------|------------------------|-----|-----------------|--| | Military | –55°C to +125°C | 0V | 5.0V ± 10% | | | Commercial | 0°C to +70°C | 0V | 5.0V ± 10% | | # CAPACITANCES(4) $V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz$ | Symbol | Parameter | Conditions | Тур. | Unit | |------------------|--------------------|-----------------------|------|------| | C _{IN} | Input Capacitance | $V_{IN} = 0V$ | 5 | pF | | C _{OUT} | Output Capacitance | V _{OUT} = 0V | 7 | pF | # DC ELECTRICAL CHARACTERISTICS Over Recommended operating temperature and supply voltages(2) | Sym. Parameter | | Test Condition | P4C
P4C | Unit | | | |------------------|------------------------------------|---|----------------|----------------------|----------------------|----------| | | | | | Min | Max | | | V _{IH} | Input High Voltage | | | 2.2 | V _{cc} +0.5 | V | | V _{IL} | Input Low Voltage | | | -0.5 ⁽³⁾ | 0.8 | V | | V _{HC} | CMOS Input High Voltage | | | V _{cc} -0.2 | V _{cc} +0.5 | V | | V _{LC} | CMOS Input Low Voltage | | | -0.5 ⁽³⁾ | 0.2 | V | | V _{CD} | Input Clamp Diode Voltage | $V_{CC} = Min., I_{IN} = -18 \text{ m/s}$ | 4 | | -1.2 | V | | V _{OL} | Output Low Voltage
(TTL Load) | $I_{OL} = +8 \text{ mA}, V_{CC} = \text{Min}.$ | | 0.4 | V | | | V _{OLC} | Output Low Voltage
(CMOS Load) | $I_{OLC} = +100 \mu\text{A}, V_{CC} = M$ | | 0.2 | V | | | V _{OH} | Output High Voltage
(TTL Load) | $I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}.$ | | 2.4 | | V | | V _{OHC} | Output High Voltage
(CMOS Load) | $I_{OHC} = -100 \ \mu A, \ V_{CC} = N$ | ⁄lin. | V _{cc} -0.2 | | V | | I _{LI} | Input Leakage Current | $V_{CC} = Max.$
$V_{IN} = GND \text{ to } V_{CC}$ | Mil.
Comm'l | –10
–5 | +10
+5 | μA
μA | | I _{LO} | Output Leakage Current | $V_{CC} = Max.$ $\overline{CE} = V_{IH}$ $V_{OUT} = GND \text{ to } V_{CC}$ | Mil.
Comm'l | -10
-5 | +10
+5 | μA
μA | #### Notes: - Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability. - 2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow. - 3. Transient inputs with V $_{\rm IL}$ and I $_{\rm IL}$ not more negative than $-3.0{\rm V}$ and $-100{\rm mA}$, respectively, are permissible for pulse widths up to 20 ns. - 4. This parameter is sampled and not 100% tested. # POWER DISSIPATION CHARACTERISTICS Over recommended operating temperature and supply voltage⁽²⁾ | 0 | Parameter. | T O | P4C | | | |------------------|--|--|--------|------------|----------| | Symbol | Parameter | Test Conditions | Min | Max | Unit | | I _{cc} | Dynamic Operating
Current – 12, 15 | V _{cc} = Max., f = Max.,
Outputs Open Comm'l | _ | 130 | mA | | I _{cc} | Dynamic Operating
Current – 20, 25, 35 | V _{cc} = Max., f = Max., Mil.
Outputs Open Comm'l | _
_ | 130
100 | mA
mA | | l _{SB} | Standby Power Supply
Current (TTL Input Levels) | $\overline{CE} \ge V_{IH}$, $V_{CC} = Max.$, $f = Max.$, Outputs Open | _ | 35 | mA | | I _{SB1} | Standby Power Supply
Current
(CMOS Input Levels) | | _ | 15 | mA | # AC ELECTRICAL CHARACTERISTICS—READ CYCLE $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$ | Symbol | Doromotor | -1 | 2 | -1 | 5 | -2 | 20 | -2 | 5 | -3 | 5 | Unit | |------------------|-------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | Symbol | Parameter | Min | Max | | | t _{RC} | Read Cycle Time | 12 | | 15 | | 20 | | 25 | | 35 | | ns | | t _{AA} | Address Access
Timens | | 12 | | 15 | | 20 | | 25 | | 35 | ns | | t _{AC} | Chip Enable
Access Time | | 12 | | 15 | | 20 | | 25 | | 35 | ns | | t _{oн} | Output Hold from
Address Change | 2 | | 2 | | 3 | | 3 | | 3 | | ns | | t _{LZ} | Chip Enable to
Output in Low Z | 2 | | 2 | | 3 | | 3 | | 3 | | ns | | t _{HZ} | Chip Disable to
Output in High Z | | 6 | | 7 | | 9 | | 10 | | 15 | ns | | t _{RCS} | Read Command
Setup Time | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{RCH} | Read Command
Hold Time | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{PU} | Chip Enable to
Power Up Time | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{PD} | Chip Disable to
Power Down Time | | 12 | | 15 | | 20 | | 25 | | 25 | ns | # READ CYCLE NO. 1 (ADDRESS controlled)^(5, 6) # READ CYCLE NO. 2 (CE controlled)(5,7) # Notes: - 5. $\overline{\text{WE}}$ is HIGH for READ cycle. - 6. $\overline{\text{CE}}$, $\overline{\text{OE}}$ are LOW for READ cycle. - ADDRESS must be valid prior to, or coincident with, CE transition LOW. - 8. Transition is measured $\pm 200 mV$ from steady state voltage prior to change, with loading as specified in Figure 1. - Read Cycle Time is measured from the last valid address to the first transitioning address. # AC ELECTRICAL CHARACTERISTICS—WRITE CYCLE (V_{CC} = 5V \pm 10%, All Temperature Ranges)⁽²⁾ | Cymphel | Devemeter | -12 | | -15 | | -20 | | -2 | 5 | -35 | | Unit | |------------------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | Symbol | Parameter | Min | Max | Unit | | t _{wc} | Write Cycle Time | 12 | | 15 | | 18 | | 20 | | 30 | | ns | | t _{cw} | Chip Enable Time to End of Write | 12 | | 15 | | 18 | | 20 | | 25 | | ns | | t _{AW} | Address Valid to
End of Write | 12 | | 15 | | 18 | | 20 | | 25 | | ns | | t _{AS} | Address Set-up
Time | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{wP} | Write Pulse Width | 12 | | 15 | | 18 | | 20 | | 25 | | ns | | t _{AH} | Address Hold
Time | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{DW} | Data Valid to
End of Write | 7 | | 8 | | 10 | | 10 | | 15 | | ns | | t _{DH} | Data Hold Time | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{wz} | Write Enable to
Output in High Z [†] | | 4 | | 5 | | 7 | | 7 | | 13 | ns | | t _{ow} | Output Active to
End of Write | 0 | | 0 | | 0 | | 0 | | 0 | | ns | | t _{AWE} | Write Enable to
Data-out Valid [£] | | 12 | | 15 | | 20 | | 25 | | 30 | ns | | t _{ADV} | Data-in Valid to
Data-out Valid | | 12 | | 15 | | 20 | | 25 | | 30 | ns | $^{^\}dagger$ P4C1682 only. # WRITE CYCLE NO. 1 (WE controlled)(10) #### Notes 10. $\overline{\text{CE}}$ and $\overline{\text{WE}}$ must be LOW for WRITE cycle. 11. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high impedance state. 12. Write Cycle Time is measured from the last valid address to the first transitioning address. $^{^{\}mathfrak{L}}$ P4C1681 only. # **PACKAGE SUFFIX** | Package
Suffix | Description | |-------------------|------------------------------------| | Р | Plastic DIP, 300 mil wide standard | | J | Plastic SOJ | | D | CERDIP, 300 mil wide standard | | S | Small Outline IC | | L | LCC Package | # **TEMPERATURE RANGE SUFFIX** | Temperature
Range Suffix | Description | |-----------------------------|--| | С | Commercial Temperature Range,
-0°C to +70°C. | | М | Military Temperature Range,
–55°C to +125°C. | | MB | Mil. Temp. with MIL-STD-883C
Class D compliance | # **ORDERING INFORMATION** I = Ultra-low standby power designator L, if available. ss = Speed (access/cycle time in ns), e.g., 25, 35 p = Package code, i.e., P, D, S, L. t = Temperature range, i.e., C, M, MB. # **SELECTION GUIDE** The P4C1681 and P4C1682 are available in the following temperature, speed and package options. | Temperature
Range | Speed (ns) Package | 12 | 15 | 20 | 25 | 35 | |----------------------|--------------------|-------|-------|--------|--------|--------| | range | 1 ackage | 12 | 15 | 20 | 23 | | | | Plastic DIP | -12PC | -15PC | -20PC | -25PC | N/A | | Commercial | SOIC | -12SC | -15SC | -20SC | -25SC | N/A | | | SOJ | -12JC | -15JC | -20JC | -25JC | N/A | | Military Temp. | LCC | N/A | N/A | -20LM | -25LM | -35LM | | (P4C1682 Only) | CERDIP | N/A | N/A | -20DM | -25DM | -35DM | | Military | LCC | N/A | N/A | -20LMB | -25LMB | -35LMB | | Processed* | CERDIP | N/A | N/A | -20DMB | -25DMB | -35DMB | | (P4C1682 Only) | | | | | | | ^{*} Military temperature range with MIL-STD-883 Revision D, Class B processing. N/A = Not available