PHOTONIC DETECTORS INC. ## Silicon Photodiode, Blue Enhanced Photovoltaic Type PDB-V101 #### **FEATURES** - Low noise - Blue enhanced - High shunt resistance - High response #### **DESCRIPTION** The **PDB-V101** is a silicon, PIN planar diffused, blue enhanced photodiode. Ideal for low noise photovoltaic applications. Packaged in a hermetic TO-46 metal can with a flat window. #### **APPLICATIONS** - Instrumentation - Industrial controls - Laser detection - Particle detection #### ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted) | SYMBOL | PARAMETER | MIN | MAX | UNITS | |------------------|-----------------------------|-----|------|-------| | V _{BR} | Reverse Voltage | | 75 | V | | T _{STG} | Storage Temperature | -55 | +150 | ∘C | | T _o | Operating Temperature Range | -40 | +125 | ∘C | | T _s | Soldering Temperature* | | +240 | °C | | I _L | Light Current | | .5 | mA | ^{*1/16} inch from case for 3 secs max #### **SPECTRAL RESPONSE** #### WAVELENGTH (nm) ### ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted) | SYMBOL | CHARACTERISTIC | TESTCONDITIONS | MIN | TYP | MAX | UNITS | |-------------------|----------------------------|-------------------------------|-----|-----------------------|------|-------------------| | I _{sc} | Short Circuit Current | H = 100 fc, 2850 K | 4 | 4.5 | | μ A | | I _D | Dark Current | $H = 0, V_R = 10 V$ | | 20 | 45 | pA | | R _{SH} | Shunt Resistance | $H = 0, V_R = 10 \text{ mV}$ | 1 | 1.6 | | GΩ | | TCR _{SH} | RSH Temp. Coefficient | $H = 0, V_R = 10 \text{ mV}$ | | -8 | | %/℃ | | C _J | Junction Capacitance | $H = 0, V_R = 0 V^{**}$ | | 115 | | pF | | λ range | Spectral Application Range | Spot Scan | 350 | | 1100 | nm | | λр | Spectral Response - Peak | Spot Scan | | 950 | | nm | | V _{BR} | Breakdown Voltage | I = 10 μA | 30 | 50 | | V | | NEP | Noise Equivalent Power | V _R = 10 mV @ Peak | | 2.5x10 ⁻¹⁵ | | W/√ Hz | | tr | Response Time | $RL = 1 K\Omega V_R = 0 V$ | | 450 | | nS |