
PHOTONIC Silicon Photodiode, Blue Enhanced Photoconductive **DETECTORS INC.** Type PDB-C136, with daylight filter Type PDB-C136F

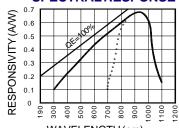
FEATURES

- Large active area
- Photoconductive
- Low cost
- High speed

DESCRIPTION: The **PDB-C136** detector is

a 1.55 mm² planar PIN photodiode packaged in a T 1 3/4, flat top, water clear plastic housing. Designed for high speed, low capacitance, photoconductive applications. The **PDB-C136F** includes a daylight filter.

APPLICATIONS


- Smoke detectors
- Light pen detectors
- Fiber optics
- · Bar code detectors

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	
V_{BR}	Reverse Voltage		100	V	
T _{STG}	Storage Temperature	-40	+100	∘C	
T _o	Operating Temperature Range	-40	+80	∘C	
T _s	Soldering Temperature*		+260	∘C	
IL	Light Current		0.5	mA	

^{*1/16} inch from case for 3 secs max

SPECTRAL RESPONSE

WAVELENGTH (nm)

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

TELESTICS OF TIGAL STIATAGE LINES (TA-25 O GIRCSS OTHERWISE HOLEG)									
SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS			
I _{sc}	Short Circuit Current	H = 100 fc, 2850 K	20	27		μ A			
I _D	Dark Current	H = 0, V _R = 10 V		2	30	nA			
R _{SH}	Shunt Resistance	$H = 0, V_R = 10 \text{ mV}$.5	2		GΩ			
TCR _{SH}	RSH Temp. Coefficient	$H = 0, V_R = 10 \text{ mV}$		-8		%/°C			
C _J	Junction Capacitance	H = 0, V _R = 10 V*		6	10	pF			
λrange	Spectral Application Range	(without daylight filter)**	400		1100	nm			
λр	Spectral Response - Peak			950		nm			
V _{BR}	Breakdown Voltage	I = 10 μA	50	100		V			
NEP	Noise Equivalent Power	V _R = 10 V @ Peak		1.8x10 ⁻¹³		W/ √Hz			
tr	Response Time	$RL = 1 K\Omega V_{p} = 50 V$		10		nS			