
SPACE ELECTRONICS INC. SPACE PRODUCTS

Low Voltage Micropower Quad Operational Amplifier

OP490RP

FEATURES:

- Rad-Pak® technology-hardened against natural space radiation
- Total dose hardness typical >100 krad (Si); dependent upon orbit and mission duration
- Package:
- 16 pin Rad-Pak® flat package
- Low input offset voltage: 5 μV max
- Low offset voltage drift
- 5 μV/°C max (over -55°C to +125°C)
- Low supply current (per amplifier) 20 µA max
- High open-loop gain 700 V/mV min
- Outstanding PSRR: 5.6 μV/V min

DESCRIPTION:

Space Electronics' OP490RP (RP for Rad-Pak®) micropower quad operational amplifier microcircuit features a 100 kilorad (Si) typical total dose tolerance; dependent upon orbit. Using SEi's radiation-hardened Rad-Pak® packaging technology, the OP490RP has an extremely low input offset voltage no less than 0.5 mV with a drift of under 5 μ V/°C, guaranteed over the full military temperature range. The OP490RP features low power consumption, drawing less than 20 μ A per amplifier. Capable of surviving space environments, the OP490RP is ideal for satellite, spacecraft, and space probe missions. The patented radiation-hardened Rad-Pak® technology incorporates radiation shielding in the microcircuit package. It eliminates box shielding while providing required lifetime in orbit. This product is available with packaging and screening up to Class S.

TABLE 1. OP490RP ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Мах	Unit		
Supply Voltage	VCC		±18	V		
Differential Input Voltage		(V-) - 20	(V+) + 20	V		
Common-Mode Input Voltage		(V-) - 20	(V+) + 20	V		
Output Short-Circuit Duration	Continuous					
Storage Temperature Range	TS	-65	+150	ОС		
Operating Temperature Range	TA	-55	+125	ОО		

TABLE 2. OP490RP ELECTRICAL CHARACTERISTICS

(VS $=\pm15$ v, TA =+25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Мім	Түр	Max	Units
Input Offset Voltage	VOS			0.2	0.5	mV
Input Offset Current	IOS	VCM = 0V		0.4	3	nA
Input Bias Current	IB	VCM = 0V		4.2	15	nA
Large Signal Voltage Gain	AVO	$VS = \pm 15V, VO = 10V$ $RL = 100k\Omega$ $RL = 10k\Omega$ $RL = 2k\Omega$	700 350 125	1200 600 250	 	V/mV
		$V+=5V, V-=0V, 1V< V0<4V$ $RL=100k\Omega$ $RL=10k\Omega$	200 100	400 180		
Input Voltage Range ¹	IVR	V + = 5V, V - = 0V $VS = \pm 15V$	0/4 -15/13.5			V
Output Voltage Swing	VO	$VS = \pm 15V$ $RL = 10k\Omega$ $RL = 2k\Omega$	±13.5 ±10.5	±14.2 ±11.5		V
	VOH	$V + = 12V, V - = 0V$ $RL = 2k\mathbf{\Omega}$	12.0	4.2		
	VOL ²	$V+ = 5V, V- = 0V$ $RL = 10k\Omega$		100	500	
Common Mode Rejection	CMR	$VCM = \pm 12V$	90	110		dB
		V + = 5V, V = 0V		110		
		$VS = \pm 15V$, $-15V < VCM < 13.5$	100	130		
Power Supply Rejection Ratio	PSRR			1.0	5.6	μV/V
Slew Rate	SR	$VS = \pm 15V$	5	12		V/ms
Supply Current (All Amplifiers)	ISY	$VS = \pm 1.5$ V, No Load $VS = \pm 15$ V, No Load		40 60	60 80	μА
Capacitive Load Stability		AV = +1		650		pF
Input Noise Voltage	en p-p	fO = 0.1Hz to $10Hz$		3		μVp-p

OP490RP

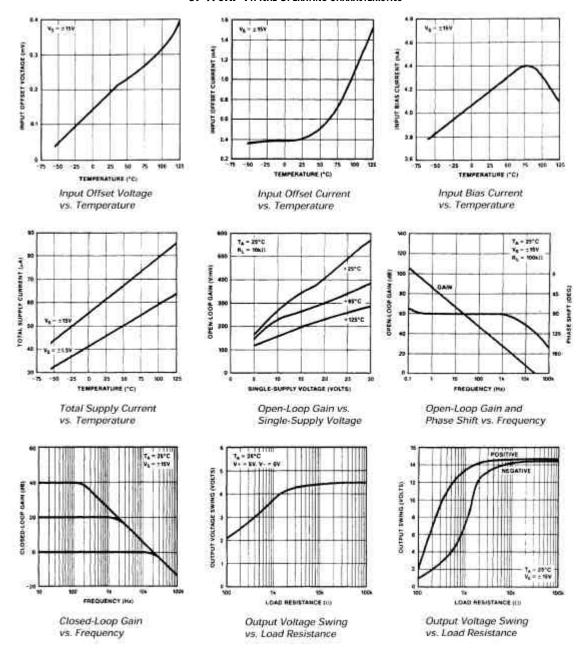
Low Voltage Micropower Quad Operational Amplifier

TABLE 2. OP490RP ELECTRICAL CHARACTERISTICS

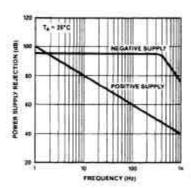
 $(VS = \pm 15v, TA = +25^{\circ}C, UNLESS OTHERWISE SPECIFIED)$

PARAMETER	Symbol	Test Conditions	Min	Түр	Max	Units
Input Resistance Differential Mode	RIN	$VS = \pm 15V$		30		MΩ
Input Resistance Common Mode	RINCM	$VS = \pm 15V$		20		Ω
Gain Bandwidth Product	GBWP	AV = +1		500		kHz
Channel Separation	CS	$VO = 20Vp-p$, $fO = 10Hz$, $VS = \pm 15V^3$	120	150		dB

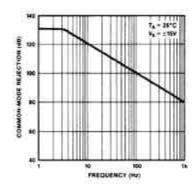
- 1. Guaranteed by CMR test.
- 2. Guaranteed by not tested.
- 3. Guaranteed but not 100% tested.

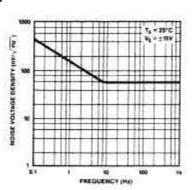

TABLE 3. OP490RP ELECTRICAL CHARACTERISTICS

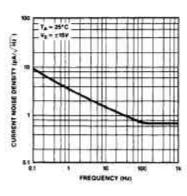
(VS $=\pm15$ V, TA =-55 to 125° C unless otherwise specified.)

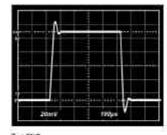

Parameter	Symbol	TEST CONDITIONS	Min	Түр	Мах	Unit
Input Offset Voltage	VOS			0.4	1.0	mV
Average Input Offset Voltage Drift	TCVOS	$VS = \pm 15V$		2	5	μV/°C
Input Offset Current	IOS	VCM = 0V		1.5	5	nA
Input Bias Current	IB	VCM = 0V		4.4	20	nA
Large Signal Voltage Gain	AVO	$VS = \pm 15V, VO = 10V$ $RL = 100k\Omega$ $RL = 10k\Omega$ $RL = 2k\Omega$	225 125 50	400 240 110	 	V/mV
		$V+=\pm5V$, $V-=0V$, $1VRL=100k\OmegaRL=10k\Omega$	100 50	200 110		
Input Voltage Range	IVR	V + = 5V, V - = 0V $VS = \pm 15V^{1}$	0/4 -15/13.5	 	 	V
Output Voltage Swing	VO	$VS = \pm 15V$ $RL = 10k\Omega$ $RL = 2k\Omega$	±13 ±10	±13.7 ±11		V
	VOH	$V + = 5V, V - = 0V$ $RL = 2k\Omega$	3.9	4.1		V
	VOL ²	$V+=5V, V-=0V$ $RL=10k\Omega$		100	500	μV
Common Mode Rejection	CMR	V + = 5V, $V - = 0V$, $0V < VCM < 3.5VVS = \pm 15 V, -15V < VCM < 13.5 V$	85 95	108 115		dB
Power Supply Rejection Ratio	PSRR			3.2	10	μV/V
Supply Current (All Amplifiers)	ISY	$VS = \pm 1.5V$, No Load $VS = \pm 15V$, No Load		70 90	100 120	μΑ

- 1. Guaranteed by CMR test.
- 2. Guaranteed but not tesetd.

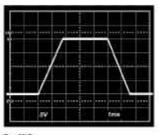

OP490RP Typical Operating Characteristics


OP490RP Typical Operating Characteristics

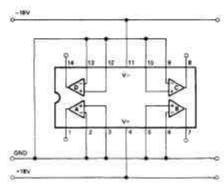

Power Supply Rejection vs. Frequency


Common-Mode Rejection vs. Frequency

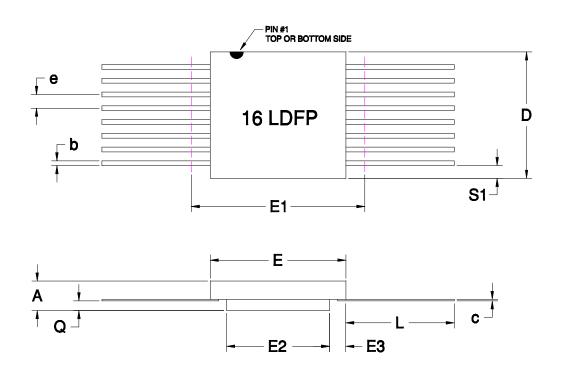
Noise Voltage Density vs. Frequency



Current Noise Density vs. Frequency


V_S = 113V A_V = +1 A_L = 10kΩ G_L = 500gF

Small-Signal Transient Response



 $T_A = 26^{\circ}C$ $V_S = \pm 16V$ $A_V = +1$ $H_L = 16kG$ $G_L + 900pF$

Large-Signal Transient Response

Burn-In Circuit

16-PIN RAK-PAK® FLAT PACKAGE

SYMBOL	DIMENSION						
	Min	Nом	Мах				
A	0.117	0.130	0.143				
b	0.015	0.017	0.022				
С	0.004	0.005	0.009				
D		0.415	0.440				
E	0.245	0.280	0.285				
E1			0.315				
E2	0.130	0.156					
E3	0.030	0.062					
е	0.050 BSC						
L	0.325	0.335	0.345				
0	0.020	0.033	0.045				
S1	0.005	0.024					
N	16						

F16-01 Note: All dimensions in inches.

OP490RP

Low Voltage Micropower Quad Operational Amplifier

Important Notice:

These data sheets are created using the chip manufacturers published specifications. Space Electronics verifies functionality by testing key parameters either by 100% testing, sample testing or characterization.

The specifications presented within these data sheets represent the latest and most accurate information available to date. However, these specifications are subject to change without notice and Space Electronics assumes no responsibility for the use of this information.

Space Electronics' products are not authorized for use as critical components in life support devices or systems without express written approval from Space Electronics.

Any claim against Space Electronics Inc. must be made within 90 days from the date of shipment from Space Electronics. Space Electronics' liability shall be limited to replacement of defective parts.