

April 2003 Revised April 2003

OCX160L • OCX160P Crosspoint Switch with LVDS (Preliminary) • **Crosspoint Switch with LVPECL (Preliminary)**

General Description

The OCX160L and OCX160P are SRAM-based, nonblocking 80 X 80 digital crosspoint switches capable of data rates of 667 Megabits per second per port. The I/O ports are fixed as either input or output ports. The input ports support flow-through mode only. The output ports operate in flow-through (asynchronous) mode.

The patented ActiveArray provides greater density, superior performance, and greater flexibility compared to a traditional n:1 multiplexer architecture. The OCX™ devices support various operating modes covering one input to one output at a time as well as one input to many outputs, plus a special broadcast mode to program one input to all outputs while maintaining maximum data rates. In all modes data integrity and connections are maintained on all unchanged data paths.

The RapidConfigure™ parallel interface allows fast configuration of the Output Buffers and the switch matrix. Readback is supported for device test and verification purposes. The OCX160L and OCX160P also includes a JTAG-like serial interface for configuration of the device. A functional block diagram of the OCX160L and OCX160P is shown in Figure 1.

Features

- 667Mb/s port data bandwidth, >53Gb/s aggregate bandwidth
- Low power CMOS, 2.5V and 3.3V power supply
- SRAM-based, in-system programmable
- LVDS I/O (OCX160L) and LVPECL I/O (OCX160P) version
- 160 configurable I/O ports 80 dedicated differential input ports 80 dedicated differential output ports LVTTL control interface Output Enable control for all outputs
- Non-blocking switch matrix Patented ActiveArray™ matrix for superior performance Double-buffered configuration RAM cells for simultaneous global updates
 - ImpliedDisconnect™ for single cycle disconnect/connect
- Full Broadcast and multicast capability One-to-One and One-to-Many connections Special broadcast mode routes one input to all outputs at maximum data rate
- Low jitter and signal skew
- Low duty cycle distortion
- RapidConfigure parallel interface for configuration and
- Serial programming interface for configuration
- 420 BGA package with 1.27mm ball spacing
- Integrated Termination Resistors

Applications

- SONET/SDH and DWDM
- Digital Cross-Connects
- · System Backplanes and Interconnects
- High Speed Test Equipment
- · ATM Switch Cores
- · Video Switching

Ordering Code:

Order Number	Package Number	Package Description
OCX160LPB420		420-Ball Thermally-Enhanced Ball Grid Array (TBGA), JEDEC MO-149, 1.27mm Pitch, 35mm Square
OCX160PPB420		420-Ball Thermally-Enhanced Ball Grid Array (TBGA), JEDEC MO-149, 1.27mm Pitch, 35mm Square

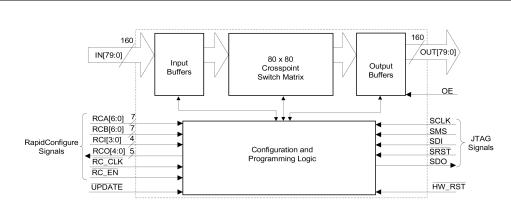


FIGURE 1. OCX160L and OCX160P Functional Block Diagram

Introduction

The OCX160L and OCX160P are differential crosspointswitching devices. The main functional block of the device is a Switch Matrix as shown in Figure 1. The Switch Matrix is a x-y structure supporting an input-to-output data flow. Figure 2 shows a conceptual view of the switch matrix with inputs connected to the horizontal trace and outputs to the

vertical trace. Connections between vertical and horizontal lines are implemented with a proprietary high-performance buffering circuit. Signal path delays through the Switch Matrix are very well balanced, resulting in predictable and uniform pin-to-pin delays.

Note: For the purpose of clarity, the logic diagrams within this datasheet are conceptual representations only and do not show actual circuit implementation.

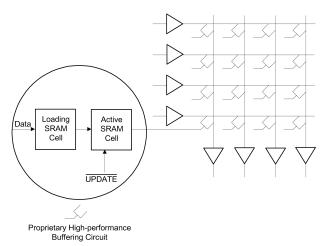


FIGURE 2. OCX160L and OCX160P Switch Matrix

Double Buffered Array

The Active SRAM cells are responsible for establishing connections in the switch matrix by turning on the interconnect circuit, while the Loading SRAM cell can be used to store a second configuration that can be transferred to the Active SRAM cell at a later time. The two SRAM cells are arranged so that a double buffered scheme can be employed. Through the use of an internal signal (generated automatically during a programming cycle) it is possible to store a second configuration map in the Loading SRAM while the Active SRAM maintains its present connection status. When the UPDATE signal is asserted LOW, the contents of the Loading SRAM cell are transferred to the Active SRAM cell and the switch matrix connection is either made or broken.

The UPDATE signal can be used to control when the switch matrix is reconfigured. For instance, as long as the UPDATE signal is asserted HIGH, the Loading SRAM cells for the entire switch matrix could be changed without affecting the current configuration of the switch. When the UPDATE signal is asserted LOW, the entire switch matrix would be reconfigured simultaneously. If the UPDATE signal is asserted continuously, all crosspoint programming commands (generated by RapidConfigure or JTAG programming cycles) will take effect immediately, since the Loading SRAM cell's contents will be transferred directly to the Active SRAM cell.

Introduction (Continued)

Input and Output Buffers

All of the I/O buffers are differential with flow-through mode. Figure 3 shows the basic block diagram of the input

and output blocks with the sources for the output control signals (OE). The control signals are explained in more details in the following sections.

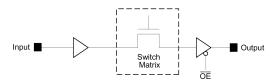


FIGURE 3. Input and Output Buffer Configuration

Input and Output Port Function Mode

The following legend describes the various modes of the Input and Output Ports and the specification used by the OCXPro™ Software.

Legend:

Ax = Switch Matrix Signal

= Port Signal

OE = Output Enable Active Low

TABLE 1. Summary for Programmable I/O Attributes for OCX160

Symbol	I/O Port Function				
Px Ax	Input	The external signal is buffered from the Input Port pin to the corresponding Switch Matrix line.	IN		
Ax Px OE	Output	The internal signal is buffered from the corresponding Switch Matrix line to the Output Port pin. In this mode an optional output enable (OE) can be selected. The default state is logic high with enable set to OFF	OP		
<u>Ax</u>	No Connect	In this mode, the output Port pin is isolated from the Switch Matrix.	NC		

Broadcast Mode

The OCX160L and OCX160P have a special Broadcast Mode which connects any input to all outputs without performance degradation. The input is selected using Rapid-Configure or Serial interface and disconnects all other inputs. The Global Update pin (UPDATE) must be held HIGH during Broadcast Mode. Asserting the UPDATE pin returns the array to the previous program condition.

Output Control Signals

Every output port of the OCX160L and OCX160P have a global Output Enable signal (OE). All output buffers have output enables that have programmable polarity and are individually configurable.

Additionally each output can be permanently enabled (always ON) or disabled (always OFF) which is useful for applications which need to 3-STATE outputs (for example when using multiple chips in expansion mode) or for power saving in designs that do not need to use all the outputs available.

Two control bits are used to control the function of the output enable.

RapidConfigure Interface

RapidConfigure (RC) is a 23 signal parallel interface that is used to program the OCX160L and OCX160P device. The 23 pins are allocated as follows:

RCA[6:0] = RapidConfigure Address A. RCA are Input Pins.

RapidConfigure Address B.

RCB[6:0] = RCB are Input Pins.

RCI[3:0] = RapidConfigure Instruction Bits

RCO[2:0] = RapidConfigure Readback.

RCO are Output Pins.

RC_CLK = RapidConfigure Clock

RC EN = RapidConfigure Cycle Enable (state is sensed on the negative edge of clock)

RapidConfigure Programming Instructions

The RC interface supports both write and read types of

- 1. Write Operations (reset crosspoint and Input or Output Buffer, configure an Output Buffer, connect/disconnect
- 2. Read Operations (Output Buffer and crosspoint configuration read).

RCI[3:0]	RCA[6:0]	RCB[6:0]	RCO[2:0]	Instruction	Description
0000			Reserved		2000p
0001				Reserved	
0010	Х	Х		Reset Crosspoint Array	Reset, along with an Update operation (UPDATE pin or Update command), resets the entire crosspoint array to no connect. All Output Buffers remain unchanged by this operation.
0011	Х	Input Port Address		Set Array to Broadcast mode	Connects the input selected by RCB[6:0] to all output ports and disconnects all other inputs. The Global Update (UPDATE) pin must be held HIGH during Broadcast mode. Activating the Global Update pin returns the array to the previous program condition.
0100	Output Port Address	Data		Configure an Output Buffer	Program an Output Buffer specified by RCA[6:0]. See Table 4 for RCB[6:0] bit assignment and buffe functionality.
0101				Readback Crosspoint, Output Buffer status	This is a two-cycle instruction.
Cycle 1	Output Port Address	Input Port Address	Х		Specify the crosspoint connect status at output location specified by RCA[6:0] to the input location specified by RCB[6:0].
Cycle 2	Х	Х	Output Data		Readback (using RCO[2:0]) the status of the input buffer specified in Cycle 1 by RCA[6:0], the output buffer specified in Cycle 1 by RCO[2:0] and the crosspoint connect status. See Table 3 for RCO[2:0] readback pin assignment
0110	Х	Х		Update	Program the Global Update function without the us of the UPDATE pin.
0111	Х	Input Port Address		Disconnect Input	Disconnect the crosspoint cells of the input row location specified by RCA[6:0].
1000	Output Port Address	Input Port Address		Disconnect Input and Output	Disconnect the crosspoint cell at the output location specified by RCA[6:0] to the input location specified by RCB[6:0]. All other connections from the source input address or to the same output address remain the same a before.
1001	Output Port Address	Input Port Address		Connect, with ImpliedDisconnect	Connect the crosspoint cell at the output location specified by RCA[6:0] to the input location specifie by RCB[6:0]. All other connections from the same input address or to the same output address are set to No Connect (NC).
1010	Output Port Address	Input Port Address		Connect, without ImpliedDisconnect	Connect the crosspoint cell at the output location specified by RCA[6:0] to the input location specifie by RCB[6:0]. All other connections to the same output address are set to No Connect while all other connections from the same input address remain the same as before.
1011				Reserved	
1100				Reserved	
1101	Х	Х		Reset All	Reset the switch matrix to No Connects. Update if forced internally. Sets the Output Buffer to Flow-through mode with Output Enable OFF.
1110				Reserved	
1111	1			Reserved	

X = Don't care.

Introduction (Continued)

TABLE 3. RCO[2:0] Readback Pin Assignment

ROC[2:0]	Readback Location	Signal/Function
O2	Crosspoint	Connection Status:
		0 = No Connection (NC) — (default state at reset)
		1 = Connected
O1, O0	Output Buffer	Output Enable:
0, 0		Output Enabled (ON) — (default state at reset)
0, 1		Output Disabled (OFF)
1, 0		Output controlled by OE (active HIGH)
1, 1		Output controlled by OE (active LOW)

TABLE 4. Programming an Output Buffer using RapidConfigure

RCB[6:0]	Signal/Function
B6, B5, B4, B3, B2	Don't Care
B ₁ , B ₀	Output Enable:
0,0	Output Enabled (ON) — (default state at reset)
0,1	Output Disabled (OFF)
1,0	Output Controlled by OE (active HIGH)
1,1	Output Controlled by OE (active LOW)

Serial Interface Configuration Controller

The Output port attributes and the Switch matrix connections can be programmed using the serial bus. The Rapid-Configure Interface can be enabled or disabled using the serial bus.

The serial interface mode is always available for configuration regardless of whether the RapidConfigure mode is enabled or disabled. However, proper care must be taken when switching between Serial Interface and RapidConfigure for configuring the devices. Before attempting to change Switch Matrix connections or output port configuration through the Serial Interface, the user must first ensure that the RapidConfigure mode is disabled by using the Serial Interface serial mode to set the RCE bit to zero in the Mode Control Register.

Serial Interface

The dedicated Serial interface has five pins: Serial Data Out (SDO), Serial Mode Select (SMS), Serial Data In (SDI), Serial Reset (\$\overline{SRST}\$), and Serial Clock (\$CLK), for device configuration and verification. Fairchild OCXPro software will automatically generate the necessary bitstream from a higher-level textual description of the required configuration. Data on the SDI and SMS pins are clocked into the device on the rising edge of the SCLK signal, while the

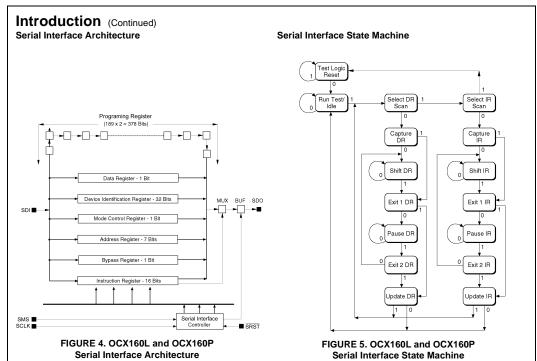
valid data appears on the SDO pin after the falling edge of SCLK. For more detailed information on Serial programming, refer to the OCX Family Register Programming Manual.

Output Port Configuration

Output port configuration is accomplished by loading the appropriate bitstream into the programming registers present at each Output port. The serial bus is used to load configuration data into the Output port programming registers, one Output port at a time.

Switch Matrix Configuration

The contents of the SRAM cells controlling Switch Matrix connection can be modified using the Serial interface. This is accomplished by loading the configuration data, one word at a time, into the SRAM cells in the Switch Matrix.


Mode Control Register Configuration

The OCX160L and OCX160P contains a single bit Mode Control Register used to store user flags for RapidConfigure Enable (RCE). These are required for proper functioning of the device. The contents of this register can be changed using the Serial interface and a special Serial instruction.

TABLE 5. Mode Control Register

RCE	Mode
0	RapidConfigure Interface Disabled (OFF)
1	RapidConfigure Interface Enabled (ON)

Address A

Serial Input Format

Instruction

TABLE 6. Serial Input Format

Data

Bit Number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name	13	12	I1	10	BB	BA	В9	B8	В7	A6	A5	A4	A3	A2	A1	A0
								•			•		•			

Preliminary

Introduction (Continued) Serial Interface Instructions

TABLE 7. Serial Interface Instructions

IABLE 7. Serial Interface Instructions									
I [3:0]	ВВ	ВА	В9	B8	B7	A6 - A0	Instruction	Description	
0000	Χ	Х	X	Χ	Х	X	Sample/EXTEST	Places the device in scan mode.	
0 0 0 1	Χ	Χ	Χ	Χ	Х	X	Sample/EXTEST	Places the device in scan mode.	
0 0 1 0	Х	Х	Х	X	X	X	Reset the Crosspoint Array	Reset, along with an Update operation (UPDATE pin or Update command) resets the entire Crosspoint Array to No Connect (B7 and B8 are not changed)	
0 0 1 1	X	X	X	X	X	X	Set Array for Broadcast mode	Use the Address Register as the Input address to be the broadcast input. Connects the selected Input to all Output cells and disconnects all other Inputs. Activating the Global Update instruction returns the Crosspoint array from the Broadcast mode to the previous programed state.	
0 1 0 0	X	X	Х	OE	OE	Output Buffer Address	Program a Buffer	Programs the Output Buffer address specified in the Serial instruction (A6 - A0). The configuration data is also specified in the Serial instruction bit BA - B7. See Table 8 for bit assignment of the Buffer functionality.	
0 1 0 1	х	Х	Х	Х	х	Output Address/ Buffer	Configuration Readback	Readback the connectivity of the Crosspoint cell with the Input location specified in the Address Register and the Output location specified Serial instruction (A0 - A6). It also returns the configuration of the Output Buffer addressed in the Serial instruction (A0 - A6). The readback data is shifted out of SDO in the following sequence: 1. Crosspoint Connect (1 = connected, 0 = No Connection) 2. Output Enable — B7 (see Table 8) 3. Output Enable — B8 (see Table 8) 4. Reserved (Don't Care) 5. Reserved (Don't Care) 6. State of Broadcast bit 7. State of the RCE bit Note: This instruction does not increment the Address Register. This instruction also requires two DR cycles.	
0 1 1 0	Х	Х	Х	Х	Х	Х	Update the Crosspoint Array	Update the programmed connection from the Loading SRAM to the Active SRAM.	
0 1 1 1	Х	Х	Х	X	X	Х	Disconnect Input Cell	Disconnect the Crosspoint connections from the Input address specified in the Address Register.	
1000	Х	Х	Х	Х	Х	Output Address	Disconnect Input	Disconnect the Crosspoint cell at the Input location specified at the Address Register and the Output location specified in the Disconnect instruction (A6 - A0). All other connections from the same input address or to the same output address remain the same.	
1 0 0 1	Х	Х	Х	Х	Х	Output Address	Connect with ImpliedDisconnect	Connects the Crosspoint cell at the Input location specified on the Address Register and the output location specified in the Connect Serial instruction (A6 - A0). All other connections from the same Input address or the same Output address are set to No Connects. Note: This instruction increments the Address Register (Input address).	

Introduction (Continued)

Serial Interface Instructions (Continued)

I [3:0]	BB	BA	В9	B8	B7	A6 - A0	Instruction	Description
1 0 1	0 X	Х	Х	Х	Х	Output Address	Connect — no ImpliedDisconnect	Connects the Crosspoint cell at the Input address specified in the Address Register and the Output address specified in the Connect instruction (A6 - A0). All connections to the same output address are set to No Connect while all other connections from the same input remain the same as before.
1 0 1	1 X	Х	Х	Х	Х	Input Address	Set the Address Register	Sets the 7-bit Address Register with the 7-bit address (A6 - A0) of the Instruction Register. The 7-bit address of the Address Register becomes the Input Port address for Crosspoint Access.
1 1 0	0 X	Х	Х	Х	Х	Х	Device ID out	Serialize the device ID and revision history out to SDO.
1 1 0	1 X	Х	Х	Х	Х		Reset Output Buffer and Crosspoint	Resets the Crosspoint Array to No Connects. Sets the Output buffer to Flow-through mode with Output Enable OFF. The device ID is serialized to SDO.
111	0 X	Х	Х	Х	Х	Х	Set RCE Bit	Sets the RCE bit of the Mode Control Register with the Serial instruction bit A0. To turn ON the RCE bit, encode bit A0 to 1. To turn OFF the RCE bit, encode bit A0 to 0.
111	1 X	Х	Х	Х	Х	Х	Bypass	Places device in a mode to pass SDI data to SDO with one clock delay. Used for programming and testing devices through serial connected controls.

TABLE 8. Programming an Output using the Serial Interface

BA, B9, B8, B7	Signal/Function
B8, B7	Output Enable:
0, 0	Output Enable (ON) - this is the default state at reset
0, 1	Output Disable (OFF)
1, 0	Output Controlled by OE (active HIGH)
1, 1	Output Controlled by OE (active LOW)

TABLE 9. Number of Cycles and Configuration Time

Operation	OCX160
Ореганоп	Serial Cycles
Reset Sequence (SMS = "11111")	7
Enable or Disable Rapid Configure	28
Change Attributes of ONE Output Port	28
Change Attributes of ALL Output Ports	2,240
Reset Controller + Reset ALL Output Ports + Clear ALL SRAM Cells	35
Connect or Disconnect two Ports	56
Configure Entire Switch Matrix (All Switch Matrix Connections)	181,440
Completely Configure the Device (All Output Ports and All Switch Matrix Connections)	183,680

Introduction (Continued)

ImpliedDisconnect

ImpliedDisconnect is a feature that provides the ability to make fast switch connection changes. When using the normal "Connect" command, all other connection to the specified output are set to "No Connect". However, the specified input remains connected to any other outputs it was connected to before.

The "Connect with ImpliedDisconnect" command allows the user to disconnect the specified input from all other outputs as well. This enables the user to make a complete connection change in one Rapid Configure cycle.

Device Reset Options

The power-on reset, RapidConfigure reset, hardware reset, and Serial reset functions will program the output buffers to flow-through (OP) mode, and Output Enable OFF. The Serial interface can be reset via the SRST pin or by clocking five consecutive one to the SMS pin. The hardware reset pin can be done accomplished through the <a href="https://hww.rstr.nu/hw.

TABLE 10. Device Reset Options

Programing Interface	Reset Method	Output Enable	Switch Matrix	RCE Mode Control	Serial TAP
Hardware Reset	Power-On Reset	OFF	NC	1 (RC Enabled)	TLR (Note 1)
Haluwale Reset	HW_RST (LOW Pulse)	OFF	NC	1 (RC Enabled)	TLR
	1. Low Pulse on SRST	Unchanged	Unchanged	Unchanged	TLR
	2. SMS HIGH for 5 SCLK Cycles	Unchanged	Unchanged	Unchanged	TLR
Serial Reset	3. Device Reset (Instruction 1101)	OFF	NC	1 (RC Enabled)	TLR
	Reset Crosspoint Array (Instruction 0010)	Unchanged	NC	Unchanged	Unchanged
RapidConfigure	1. Device Reset (Instruction 1101)	OFF	NC	1 (RC Enabled)	Unchanged
Reset	Reset Crosspoint Array (Instruction 0010)	Unchanged	NC	Unchanged	Unchanged

Note 1: TLR = Test Logic Reset State.

Pin Description

TABLE 11. OCX160L and OCX160P Pin Description

Pin Name	Number of Pins	Туре	Description
INP[79:0]	80	Input	Non-Inverting Differential Input Signals
INN[79:0]	80	Input	Inverting Differential Input Signals
OUTP[79:0]	80	Output	Non-Inverting Differential Input Signals
OUTN[79:0]	80	Output	Inverting Differential Input Signals
ŌĒ	1	Input	Global Output Enable
HW_RST	1	Input	Hardware Reset
UPDATE	1	Input	Global Update
RC Pins			
RCA[6:0]	7	Input	RapidConfigure Address A
RCB[6:0]	7	Input	RapidConfigure Address B
RCO[2:0]	3	Output	RapidConfigure Readback
RCI[3:0]	4	Input	RapidConfigure Instruction Bits
RC_CLK	1	Input	RapidConfigure Clock
RC_EN	1	Input	RapidConfigure Cycle Enable
Serial Interface	Pins		
SCLK	1	Input	Serial Clock
SMS	1	Input	Serial Mode Select
SDI	1	Input	Serial Data In
SRST	1	Input	Serial Reset
SDO	1	Output	Serial Data Out
Power and Grou	ind Pins		
V _{DD} .CORE	12	2.5V Power	Core Voltage
V _{DD} .PAD (Note 2)	8	2.5V or 3.3V Power	Differential Output Buffer Voltage
V _{DD} .IN (Note 3)(Note 4)	8	3.3V Power	LVTTL Control Pins Voltage and Differential Input Buffer Voltage
V _{SS}	36	Ground	Ground
NC	5	No Connect	No Connect

Note 2: V_{DD}.PAD is 2.5V for OCX160L and 3.3V for OCX160P.

Note 3: Dedicated differential input buffers can receive both LVPECL and LVDS voltage levels using 3.3V supply.

Note 4: The LVTTL control, Serial pins, and differential input ports are 3.3V. They are not 5V tolerant.

Note 5: The differential output pins powered from 2.5V are 3.3V tolerant.

Differential I/O Standards

The OCX160L and OCX160P support the two most popular differential signaling standards: Low Voltage Positive Emitter Coupled Logic (LVPECL) and Low Voltage Differential Signaling (LVDS).

LVDS is typically used in communication systems as high speed, low noise point-to-point links.

LVPECL is commonly used in video switching applications or those designs requiring transmission of high-speed clock signals.

LVDS

LVDS is a differential signaling standard. It requires that one data bit is carried through two signal lines. As with all differential signaling standards, LVDS has an inherent noise immunity over single-ended standards. The voltage swing between two signal lines is approximately 350mV. The use of a reference voltage or a board termination voltage is not required. LVDS requires the use of two pins per input or output. The OCX160L supports LVDS signalling. Integrated Output Attenuator resistors produce the required LVDS Output swing while providing a 100Ω output impedance to minimize return reflections.

OCX160L Device

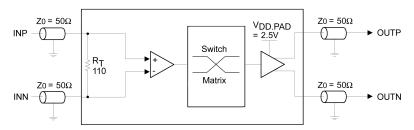


FIGURE 6. OCX160L Operating in LVDS Mode

LVPECL

LVPECL is a differential signaling standard that specifies two pins per input or output. The voltage swing between these two signal lines is approximately 850 mV. The use of a reference voltage or a board termination voltage is not required.

Transmitting and receiving circuits for LVPECL are shown in Figure 7 with termination resistors integrated on-chip, thus, removing the need for any external resistors. Integrated Output Attenuation resistors produce the required LVPECL output swing while providing a 100Ω output impedance to minimize return reflections.

OCX160P Device

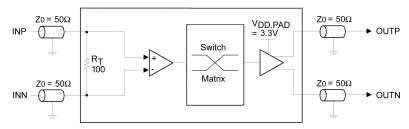


FIGURE 7. OCX160P Operating in LVPECL Mode

Absolute Maximum Ratings(Note 6)

Supply Voltage (Core)

V_{DD}.CORE

Supply Voltage (Inputs)

 V_{DD} .IN -0.3V to +3.6V

Supply Voltage (Differential Outputs)

 $V_{DD}.PAD$ -0.3V to +3.6V Input Voltage (V_{IN}) (Note 7)(Note 8) -0.3V to +3.6V

Junction Temperature (T_J) +150°C

Storage Temperature (T_{STG})

 $\begin{tabular}{lll} Maximum Power Dissipation (P_{MAX}) & 6 W \\ Electrostatic Discharge (ESD) (Note 9) & 2000V \\ \end{tabular}$

Recommended Operating Conditions

Supply Voltage (Core)

V_{DD}.CORE +2.375V to +2.625V

Supply Voltage

-0.3V to +3.0V

-65°C to +150°C

(Differential Output Buffers)

V_{DD}.PAD (Note 10) 3.3V ±10%

Supply Voltage (Inputs)

V_{DD}.IN +3.0V to +3.6V

Operating Temperature:

Commercial (T_A) 0°C to +70°C Industrial (T_A) -40°C to +85°C

Note 6: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

Note 7: A maximum undershoot of 2V for a maximum duration of 20 ns is acceptable. Overshoot to 3.6V is acceptable.

Note 8: All inputs are 3.3V tolerant with the $\rm V_{\rm DD}$ pin at 2.5V or 3.3V.

Note 9: Measured using Human Body Model.

Note 10: Note that minimum and maximum values for V_{DD} for differential outputs are I/O Standard dependent.

Pin Capacitance (Note 11)

Symbol	Parameter	Max	Units
C _{PIN}	Signal Pin Capacitance	10	pF

Note 11: Capacitance measured at 25°C. Sample tested only.

DC Electrical Characteristics

(T_A = -40°C to +85°C, V_{DD}.IN = 3.3V \pm 10%, V_{DD}.CORE = 2.5V \pm 5%)

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{IH}	High Level Input	Ports are 3.3V Tolerant	2.0	3.6	V
V _{IL}	Low Level Input	Ports are 3.3V Tolerant	-0.3	0.8	V
V _{OH}	High Level Output	V_{DD} .PAD = Min, I_{OH} = -4 mA	2.4	V _{DD} .PAD + 0.3	V
V _{OL}	Low Level Output	V _{DD} .PAD = Min, I _{OL} = 8 mA		0.4	V
IL _{IH} ,	Input Pin Leakage Current	V _{DD} .IN = Max		+5.0	
IL _{IL} (Note 12)	(Note 12)	0.0 < In < V _{DD} .PAD		-50.0	μА
IL _{OZ}	3-STATE Leakage Output OFF State	V _{DD} .PAD = Max		+5.0	^
	(Note 12)	0.0 < In < V _{DD} .PAD		-5.0	μΑ
Power	•	•			
Popo (Note 14)	Quiescent Power	All Vpp = Max		0.5	W

Note 12: All LVTTL input pins have pull-up resistors

Note 13: Input leakage only valid when both positive and negative inputs/outputs area equal (i.e. both HIGH or both LOW).

Note 14: See Power Consumption section for dynamic power consumption calculation.

OCX160P (LVPECL) DC Electrical Specifications (V_{DD.PAD} = 3.3V)

Symbol	DC Parameters	Min	Max	Units
V _{IN_DIFF}	Input Differential Voltage	±100.0		mV
V _{IN_COM}	Input Common Mode Voltage	0.25	2.25	V
V _{OUT_DIFF}	Output Differential Voltage	±650.0	±900.0	mV
V _{OUT_COM}	Output Common Mode Voltage	V _{DD} .PAD/2	V _{DD} .PAD/2	V
Z _{IN}	Termination Impedance	80.0	120.0	Ω

OCX160L (LVDS) DC Electrical Specifications (V_{DD}.PAD = 2.5V)

Symbol	DC Parameter	Min	Тур	Max	Units
V _{OH}	Output High Voltage for OUTP and OUTN			1.6	V
V _{OL}	Output Low Voltage for OUTP and OUTN	0.90			V
V _{OUT_DIFF}	Differential Output Voltage (Note 15)	±250.0	±350.0	±450.0	mV
V _{OUT_COM}	Output Common-Mode Voltage	1.125	1.25	1.375	V
V _{IN_DIFF}	Differential Input Voltage	±100.0	±350.0		mV
V _{IN_COM}	Input Common-Mode Voltage	0.25	1.25	2.25	V
Z _{IN}	Termination Impedance	88.0		132.0	Ω

Note 15: Maximum capacitive load is 12 pF.

LVPECL AC Electrical Specifications $(V_{DD}.IN=3.3V~\pm10\%,~V_{DD}.CORE=2.5V~\pm5\%,~V_{DD}.PAD=3.3V~\pm10\%))$

Symbol	Parameter	Min	Max	Units		
R _{DATA}	NRZ Data Rate (Note 16)		667.0	Mb/s		
t _{PHL} , t _{PLH}	One Way Signal Propagation Delay, Fanout = 1		5.5	ns		
t_{W+}	Input Flow-through Positive Pulse Width	1.5		ns		
t_{W-}	Input Flow-through Negative Pulse Width	1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5				
t _{DCD+} , t _{DCD-}	Duty Cycle Distortion		0.5	ns		
t _{JITTER}	Output Jitter		0.5	ns		
t _{SK}	Skew Between Output Ports (Note 16)		0.5	ns		
t_{PHZ_OT},t_{PLZ_OT}	Output Enable to Valid Data		5.0	ns		
t _{PZH_OT} , t _{PZL_OT}	Output Enable to High Z State		5.0	ns		
t _{RC}	RapidConfigure Clock Period	12.0		ns		
t _{W+_RC} , t _{W_RC}	RapidConfigure Clock Pulse Width	5.0		ns		
t _{S_RC}	RapidConfigure Address Setup to RC_CLK	3.0		ns		
t _{H_RC}	RapidConfigure Address and Enable Hold Time to RC_CLK	3.0		ns		
t _{P_UD}	Update of Crosspoint to Data Out		10.0	ns		
f _{SI}	Serial Clock Frequency (SCLK)		20.0	MHz		
t _{W_SI}	Serial Clock Pulse Width (SCLK) @ 20 MHz Cycle	20.0	30.0	ns		
t _{S_SI}	Serial Setup Time	4.0		ns		
t _{H_SI}	Serial Hold Time	0.0		ns		
t _{P_SI}	Serial Clock to Output Data Valid (SDO)		20.0	ns		

Note 16: These parameters are guaranteed but not tested in production.

Timing Diagrams

NOTE: For the purpose of clarity, the timing diagrams within this datasheet are conceptual representations only and do not show actual circuit implementation.

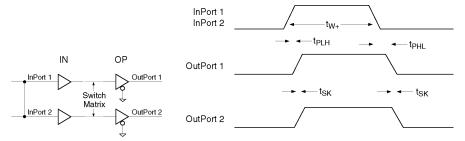


FIGURE 8. Flow-Through Mode Timing

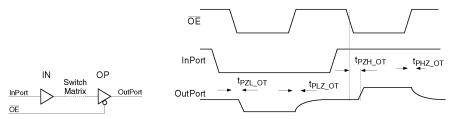


FIGURE 9. Output Enable Timing

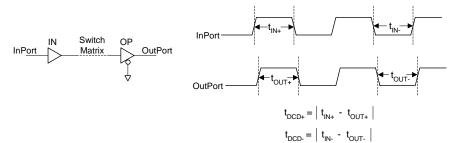


FIGURE 10. Duty Cycle Distortion

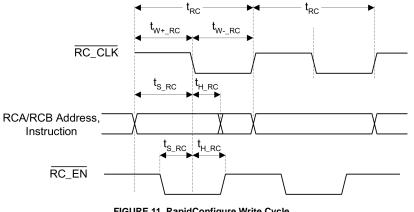
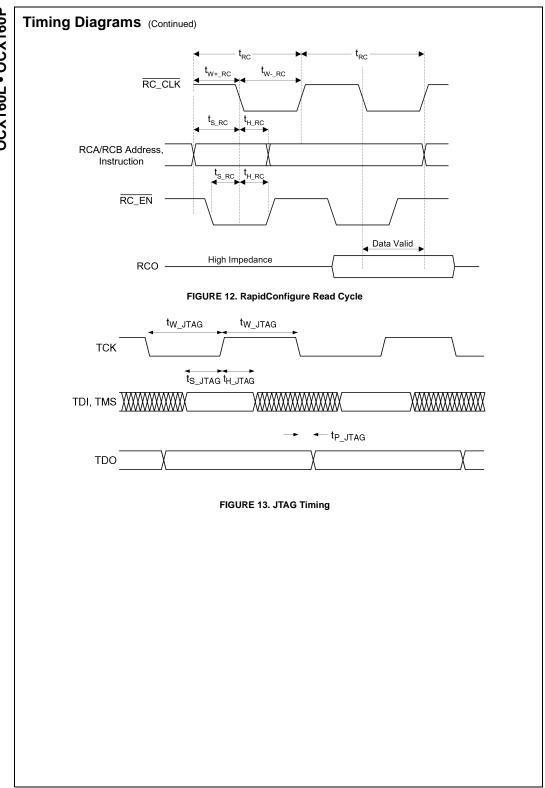



FIGURE 11. RapidConfigure Write Cycle

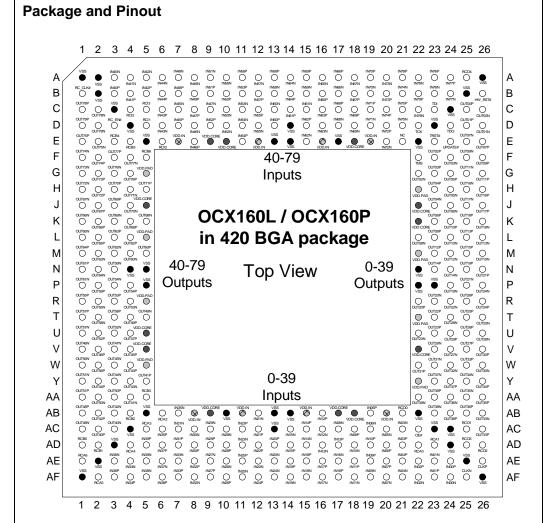


FIGURE 14. OCX160 Package Pinout

Package and Pinout (Continued) Pinout by Ball Sequence

TABLE 12. OCX160L and OCX160P Pinout By Ball Sequence

Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name
A1	V _{SS}	B1	RC_CLK	C1	OUT78P	D1	OUT79P	E1	OUT75P
A2	V _{SS}	B2	V_{SS}	C2	OUT78N	D2	OUT79N	E2	OUT75N
A3	IN40N	В3	IN40P	C3	V _{SS}	D3	RC_EN	E3	RCB4
A4	IN41N	B4	IN41P	C4	RCI2	D4	V_{SS}	E4	RCB5
A5	IN42N	B5	IN42P	C5	RCI3	D5	RCI1	E5	V_{SS}
A6	IN44N	B6	IN44P	C6	IN43P	D6	IN43N	E6	RCI0
A7	IN48N	B7	IN48P	C7	IN45N	D7	IN45P	E7	V _{DD} .IN
A8	IN49N	B8	IN49P	C8	IN47P	D8	IN46N	E8	IN46P
A9	IN51N	B9	IN51P	C9	IN47N	D9	IN52P	E9	V _{DD} .CORE
A10	IN56N	B10	IN50P	C10	IN50N	D10	IN52N	E10	V _{DD} .CORE
A11	IN56P	B11	IN53P	C11	IN53N	D11	IN54N	E11	IN54P
A12	IN57N	B12	IN57P	C12	IN55P	D12	IN55N	E12	V _{DD} .IN
A13	IN58P	B13	IN58N	C13	IN60N	D13	IN60P	E13	V_{SS}
A14	IN64N	B14	IN64P	C14	IN61P	D14	V_{SS}	E14	V_{SS}
A15	IN59P	B15	IN59N	C15	IN61N	D15	IN62P	E15	IN62N
A16	IN65N	B16	IN65P	C16	IN63P	D16	IN63N	E16	V _{DD} .IN
A17	IN66P	B17	IN66N	C17	IN68P	D17	IN68N	E17	V_{SS}
A18	IN67N	B18	IN67P	C18	IN69P	D18	IN69N	E18	V _{DD} .CORE
A19	IN70P	B19	IN70N	C19	IN71P	D19	IN71N	E19	V _{DD} .IN
A20	IN73N	B20	IN73P	C20	IN74P	D20	IN72P	E20	IN72N
A21	IN78P	B21	IN74N	C21	IN75P	D21	IN75N	E21	NC
A22	IN78N	B22	IN79P	C22	IN79N	D22	SCLK	E22	V_{SS}
A23	IN76P	B23	IN76N	C23	SDI	D23	V _{SS}	E23	SRST
A24	IN77P	B24	IN77N	C24	V_{SS}	D24	SDO	E24	UPDATE
A25	RCO2	B25	V_{SS}	C25	OUT00P	D25	OUT01P	E25	OUT07N
A26	V _{SS}	B26	HW_RST	C26	OUT00N	D26	OUT01N	E26	OUT07P

Package and Pinout (Continued)

TABLE 15 (Continued)

Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name
F1	OUT74N	G1	OUT73N	H1	OUT72N	J1	OUT67N	K1	OUT66N
F2	OUT74P	G2	OUT73P	H2	OUT72P	J2	OUT67P	K2	OUT66P
F3	OUT77P	G3	OUT76N	Н3	OUT70P	J3	OUT69P	K3	OUT69N
F4	OUT77N	G4	OUT76P	H4	OUT71N	J4	OUT70N	K4	OUT68P
F5	RCB6	G5	V _{DD} .PAD	H5	OUT71P	J5	V _{DD} .CORE	K5	OUT68N
F22	SMS	G22	OUT02N	H22	V _{DD} .PAD	J22	V _{DD} .CORE	K22	V _{DD} .CORE
F23	OUT02P	G23	OUT03P	H23	OUT04P	J23	OUT04N	K23	OUT06P
F24	OUT03N	G24	OUT05P	H24	OUT05N	J24	OUT06N	K24	OUT10P
F25	OUT09N	G25	OUT11N	H25	OUT16N	J25	OUT17N	K25	OUT18P
F26	OUT09P	G26	OUT11P	H26	OUT16P	J26	OUT17P	K26	OUT18N
L1	OUT65N	M1	OUT64P	N1	OUT61P	P1	OUT61N	R1	OUT55P
L2	OUT65P	M2	OUT63N	N2	OUT64N	P2	OUT59P	R2	OUT55N
L3	OUT63P	M3	OUT62N	N3	OUT59N	P3	OUT54N	R3	OUT53P
L4	OUT62P	M4	OUT60N	N4	V _{SS}	P4	OUT54P	R4	OUT53N
L5	V _{DD} .PAD	M5	OUT60P	N5	V _{SS}	P5	V_{SS}	R5	V _{DD} .PAD
L22	OUT08N	M22	V _{DD} .PAD	N22	V _{SS}	P22	V _{SS}	R22	OUT20P
L23	OUT08P	M23	OUT12P	N23	OUT14P	P23	V_{SS}	R23	OUT20N
L24	OUT10N	M24	OUT12N	N24	OUT14N	P24	OUT19N	R24	OUT22N
L25	OUT13P	M25	OUT15P	N25	OUT19P	P25	OUT21N	R25	OUT28P
L26	OUT13N	M26	OUT15N	N26	OUT21P	P26	OUT24N	R26	OUT24P
T1	OUT57P	U1	OUT57N	V1	OUT46N	W1	OUT56N	Y1	OUT51N
T2	OUT58N	U2	OUT52P	V2	OUT46P	W2	OUT56P	Y2	OUT44P
Т3	OUT58P	U3	OUT52N	V3	OUT47N	W3	OUT45N	Y3	OUT44N
T4	OUT49P	U4	OUT47P	V4	OUT45P	W4	OUT43P	Y4	OUT43N
T5	OUT49N	U5	V _{DD} .CORE	V5	V _{DD} .CORE	W5	V_{DD} .PAD	Y5	OUT41P
T22	V _{DD} .PAD	U22	OUT23N	V22	V _{DD} .CORE	W22	OUT31P	Y22	V_{DD} .PAD
T23	OUT22P	U23	OUT23P	V23	OUT29N	W23	OUT31N	Y23	OUT37N
T24	OUT28N	U24	OUT29P	V24	OUT27N	W24	OUT32N	Y24	OUT37P
T25	OUT25P	U25	OUT26P	V25	OUT27P	W25	OUT32P	Y25	OUT34N
T26	OUT25N	U26	OUT26N	V26	OUT30P	W26	OUT30N	Y26	OUT34P

AA1	OUT51P
AA2	OUT50N
AA3	OUT50P
AA4	OUT41N
AA5	RCB3
AA22	OUT39N
AA23	OUT39P
AA24	OUT36N
AA25	OUT35N
AA26	OUT35P

Package and Pinout (Continued)

TABLE 15 (Continued)

Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name
AB1	OUT48P	AC1	OUT48N	AD1	RCB0	AE1	RCA6	AF1	V_{SS}
AB2	OUT42P	AC2	OUT40P	AD2	RCB1	AE2	V_{SS}	AF2	RCA5
AB3	OUT42N	AC3	OUT40N	AD3	V_{SS}	AE3	IN36N	AF3	IN36P
AB4	RCB2	AC4	V_{SS}	AD4	RCA4	AE4	IN34N	AF4	IN34P
AB5	V_{SS}	AC5	RCA3	AD5	IN39P	AE5	IN39N	AF5	IN38N
AB6	RCA2	AC6	IN35P	AD6	IN37P	AE6	IN37N	AF6	IN38P
AB7	IN35N	AC7	IN31N	AD7	IN31P	AE7	IN33N	AF7	IN33P
AB8	V_{DD} .IN	AC8	IN30N	AD8	IN30P	AE8	IN32P	AF8	IN32N
AB9	V _{DD} .COR	AC9	IN29N	AD9	IN29P	AE9	IN27N	AF9	IN27P
AB10	V_{SS}	AC10	IN28N	AD10	IN28P	AE10	IN26N	AF10	IN26P
AB11	V_{DD} .IN	AC11	IN23P	AD11	IN23N	AE11	IN25P	AF11	IN25N
AB12	IN21N	AC12	IN21P	AD12	IN22P	AE12	IN22N	AF12	IN24P
AB13	V_{SS}	AC13	V_{SS}	AD13	IN20P	AE13	IN20N	AF13	IN24N
AB14	V_{SS}	AC14	IN15N	AD14	IN15P	AE14	IN19P	AF14	IN19N
AB15	V_{DD} .IN	AC15	IN14P	AD15	IN14N	AE15	IN18P	AF15	IN18N
AB16	IN12P	AC16	IN12N	AD16	IN13N	AE16	IN17P	AF16	IN17N
AB17	V _{DD} .COR	AC17	IN08N	AD17	IN13P	AE17	IN16N	AF17	IN16P
AB18	V _{DD} .COR	AC18	IN08P	AD18	IN10N	AE18	IN11P	AF18	IN11N
AB19	IN05P	AC19	IN06N	AD19	IN10P	AE19	IN09P	AF19	IN09N
AB20	V_{DD} .IN	AC20	IN05N	AD20	IN06P	AE20	IN07P	AF20	IN07N
AB21	RCO0	AC21	IN03N	AD21	IN03P	AE21	IN04P	AF21	IN04N
AB22	V_{SS}	AC22	ŌĒ	AD22	RCA0	AE22	IN02P	AF22	IN02N
AB23	OUT38N	AC23	V_{SS}	AD23	RCA1	AE23	IN01N	AF23	IN01P
AB24	OUT38P	AC24	V_{SS}	AD24	V_{SS}	AE24	IN00P	AF24	IN00N
AB25	OUT36P	AC25	RCO1	AD25	NC	AE25	V_{SS}	AF25	NC
AB26	OUT33N	AC26	OUT33P	AD26	NC	AE26	NC	AF26	V _{SS}

Package and Pinout (Continued) TABLE 13. OCX160L and OCX160P Pinout By Ball Name

Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name
HW_RST	B26	IN21P	AC12	IN43P	C6	IN65P	B16	OUT04P	E23
IN00N	AF24	IN22N	AE12	IN44N	A6	IN66N	B17	OUT05N	E24
IN00P	AE24	IN22P	AD12	IN44P	В6	IN66P	A17	OUT05P	G24
IN01N	AE23	IN23N	AD11	IN45N	C7	IN67N	A18	OUT06N	J24
IN01P	AF23	IN23P	AC11	IN45P	D7	IN67P	B18	OUT06P	K23
IN02N	AF22	IN24N	AF13	IN46N	D8	IN68N	D17	OUT07N	E25
IN02P	AE22	IN24P	AF12	IN46P	E8	IN68P	C17	OUT07P	E26
IN03N	AC21	IN25N	AF11	IN47N	C9	IN69N	D18	OUT08N	L22
IN03P	AD21	IN25P	AE11	IN47P	C8	IN69P	C18	OUT08P	L23
IN04N	AF21	IN26N	AE10	IN48N	A7	IN70N	B19	OUT09N	F25
IN04P	AE21	IN26P	AF10	IN48P	B7	IN70P	A19	OUT09P	F26
IN05N	AC20	IN27N	AE9	IN49N	A8	IN71N	D19	OUT10N	L24
IN05P	AB19	IN27P	AF9	IN49P	B8	IN71P	C19	OUT10P	K24
IN06N	AC19	IN28N	AC10	IN50N	C10	IN72N	E20	OUT11N	G25
IN06P	AD20	IN28P	AD10	IN50P	B10	IN72P	D20	OUT11P	G26
IN07N	AF20	IN29N	AC9	IN51N	A9	IN73N	A20	OUT12N	M24
IN07P	AE20	IN29P	AD9	IN51P	B9	IN73P	B20	OUT12P	M23
IN08N	AC17	IN30N	AC8	IN52N	D10	IN74N	B21	OUT13N	L26
IN08P	AC18	IN30P	AD8	IN52P	D9	IN74P	C20	OUT13P	L25
IN09N	AF19	IN31N	AC7	IN53N	C11	IN75N	D21	OUT14N	N24
IN09P	AE19	IN31P	AD7	IN53P	B11	IN75P	C21	OUT14P	N23
IN10N	AD18	IN32N	AF8	IN54N	D11	IN76N	B23	OUT15N	M26
IN10P	AD19	IN32P	AE8	IN54P	E11	IN76P	A23	OUT15P	M25
IN11N	AF18	IN33N	AE7	IN55N	D12	IN77N	B24	OUT16N	H25
IN11P	AE18	IN33P	AF7	IN55P	C12	IN77P	A24	OUT16P	H26
IN12N	AC16	IN34N	AE4	IN56N	A10	IN78N	A22	OUT17N	J25
IN12P	AB16	IN34P	AF4	IN56P	A11	IN78P	A21	OUT17P	J26
IN13N	AD16	IN35N	AB7	IN57N	A12	IN79N	C22	OUT18N	K26
IN13P	AD17	IN35P	AC6	IN57P	B12	IN79P	B22	OUT18P	K25
IN14N	AD15	IN36N	AE3	IN58N	B13	NC	E21	OUT19N	P24
IN14P	AC15	IN36P	AF3	IN58P	A13	NC	AD25	OUT19P	N25
IN15N	AC14	IN37N	AE6	IN59N	B15	NC	AD26	OUT20N	R23
IN15P	AD14	IN37P	AD6	IN59P	A15	NC	AE26	OUT20P	R22
IN16N	AE17	IN38N	AF5	IN60N	C13	NC	AF25	OUT21N	P25
IN16P	AF17	IN38P	AF6	IN60P	D13	OE	AC22	OUT21P	N26
IN17N	AF16	IN39N	AE5	IN61N	C15	OUT00N	C26	OUT22N	R24
IN17P	AE16	IN39P	AD5	IN61P	C14	OUT00P	C25	OUT22P	T23
IN18N	AF15	IN40N	А3	IN62N	E15	OUT01N	D26	OUT23N	U22
IN18P	AE15	IN40P	B3	IN62P	D15	OUT01P	D25	OUT23P	U23
IN19N	AF14	IN41N	A4	IN63N	D16	OUT02N	G22	OUT24N	P26
IN19P	AE14	IN41P	B4	IN63P	C16	OUT02P	F23	OUT24P	R26
IN20N	AE13	IN42N	A5	IN64N	A14	OUT03N	F24	OUT25N	T26
IN20P	AD13	IN42P	B5	IN64P	B14	OUT03P	G23	OUT25P	T25
IN21N	AB12	IN43N	D6	IN65N	A16	OUT04N	J23	OUT26N	U26

Ball Name AB14

AB22

AC4

AC13 AC23 AC24 AD3 AD24 AE2 AE25 AF1 AF26

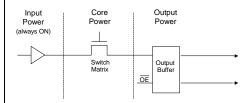
				TABLE 16	(continued)			
Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #	Ball Name	Ball #
OUT27P	U25	OUT50N	AA2	OUT73P	G2	V _{DD} .CORE	K22	V_{SS}
OUT27N	V24	OUT50P	AA3	OUT74N	F1	V _{DD} .CORE	U5	V_{SS}
OUT27P	V25	OUT51N	Y1	OUT74P	F2	V _{DD} .CORE	V5	V _{SS}
OUT28N	T24	OUT51P	AA1	OUT75N	E2	V _{DD} .CORE	V22	V_{SS}
OUT28P	R25	OUT52N	U3	OUT75N	E1	V _{DD} .CORE	AB9	V_{SS}
OUT29N	V23	OUT52P	U2	OUT76N	G3	V _{DD} .CORE	AB17	V _{SS}
OUT29P	U24	OUT53N	R4	OUT76P	G4	V _{DD} .CORE	AB18	V_{SS}
OUT30N	W26	OUT53P	R3	OUT77N	F4	V _{DD} .IN	E7	V_{SS}
OUT30P	V26	OUT54N	P3	OUT77P	F3	V _{DD} .IN	E12	V _{SS}
OUT31N	W23	OUT54P	P4	OUT78N	C2	V _{DD} .IN	E16	V _{SS}
OUT31P	W22	OUT55N	R2	OUT78P	C1	V _{DD} .IN	E19	V _{SS}
OUT32N	W24	OUT55P	R1	OUT79N	D2	V _{DD} .IN	AB8	V _{SS}
OUT32P	W25	OUT56N	W1	OUT79P	D1	V _{DD} .IN	AB11	
OUT33N	AB26	OUT56P	W2	RCA0	AD22	V _{DD} .IN	AB15	
OUT33P	AC26	OUT57N	U1	RCA1	AD23	V _{DD} .IN	AB20	
OUT34N	Y25	OUT57P	T1	RCA2	AB6	V _{DD} .PAD	G5	
OUT34P	Y26	OUT58N	T2	RCA3	AC5	V _{DD} .PAD	H22	
OUT35N	AA25	OUT58P	T3	RCA4	AD4	V _{DD} .PAD	L5	
OUT35P	AA26	OUT59N	N3	RCA5	AF2	V _{DD} .PAD	M22	
OUT36N	AA24	OUT59P	P2	RCA6	AE1	V _{DD} .PAD	R5	
OUT36P	AB25	OUT60N	M4	RCB0	AD1	V _{DD} .PAD	T22	
OUT37N	Y23	OUT60P	M5	RCB1	AD2	V _{DD} .PAD	W5	
OUT37P	Y24	OUT61N	P1	RCB2	AB4	V _{DD} .PAD	Y22	
OUT38N	AB23	OUT61P	N1	RCB3	AA5	V _{SS}	A1	
OUT38P	AB24	OUT62N	М3	RCB4	E3	V _{SS}	A2	
OUT39N	AA22	OUT62P	L4	RCB5	E4	V _{SS}	A26	
OUT39P	AA23	OUT63N	M2	RCB6	F5	V _{SS}	B2	
OUT40N	AC3	OUT63P	L3	RC_CLK	B1	V _{SS}	B25	
OUT40P	AC2	OUT64N	N2	RC_EN	D3	V _{SS}	C3	
OUT41N	AA4	OUT64P	M1	RCI0	E6		C24	
OUT41N	Y5	OUT65N	L1	RCI1	D5	V _{SS}	D4	
OUT42N	AB3	OUT65P	L2	RC12	C4	VSS	D14	
OUT42P	AB2	OUT66N	K1	RC13	C5	V _{SS}	D23	
OUT43N	Y4	OUT66P	K2	RCO0	AB21	VSS	E5	
OUT43N	W4	OUT67N	J1	RCO1	AC25	V _{SS}	E13	
OUT44N	Y3	OUT67P	J2	RCO2	A25	V _{SS}	E14	
OUT44N	Y2	OUT68N	K5	SCLK	D22	VSS	E17	
OUT45N	W3	OUT68P	K4	SDI	C23	17	E22	
OUT45P	V4	OUT69N	K3	SDO	D24	V _{SS}	N4	
OUT46N	V4 V1	OUT69P	J3	SMS	F22	V _{SS}	N5	
						V _{SS}		
OUT46P	V2	OUT70N	J4	SRST	E23	V _{SS}	N22	
OUT47N	V3	OUT70P	H3	UPDATE	E24	V _{SS}	P5	
OUT47P	U4	OUT71N	H4	V_{DD} .CORE	E9	V _{SS}	P22	
OUT48N	AC1	OUT71P	H5	V_{DD} .CORE	E10	V _{SS}	P23	
OUT48P	AB1	OUT72N	H1	V_{DD} .CORE		V _{SS}	AB5	
OUT49N	T5	OUT72P	H2	V_{DD} .CORE	J5	V_{SS}	AB10	
OUT49P	T4	OUT73N	G1	V _{DD} .CORE	J22	V_{SS}	AB13	

Package Thermal Characteristics

TABLE 14. Package Thermal Coefficients

Package	Pin Count	θ _{JC} (C/W)	θ _{JC} (C/W) Still Air
PBGA	420	1.7°C/W	12°C/W

Thermal performance values are based on simulation data.

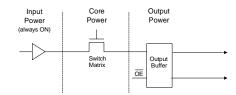

Power Consumption

- 1. Input Power: This element has two components:
 - · a steady state component that is always ON, and
 - a Component that is based on the number of inputs being used.
- Core Power: This element is the same for LVPECL or LVDS outputs. Core power is a function of data rate

(Mb/s) and the number of connection paths through the switch matrix.

 Output Power: This element is a fixed amount for each differential output. The value is zero if the Output enable (OE) is disabled or set to OFF.

Power for OCX160P - LVPECL I/O



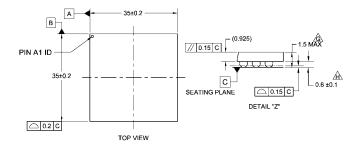
(320mW + 10mW/Input) + 0.015mW/Mbs/Connection + 37mW/Output

Example: Worst Case = $(320mv + 800mW) + (0.015mW \times 667 \times 80) + (37mW \times 80)$ 1120mw + 800 mW + 2960mW

= 4.88 watts

Power for OCX160L - LVDS I/O

(320mW + 10mW/Input) + 0.015mW/Mbs/Connection + 20mW/Output


Example: Worst Case = $(320mW + 800mW) + (0.015mW \times 667 + 80) + (20mW \times 80)$ 1120mW + 800mW + 1600mW

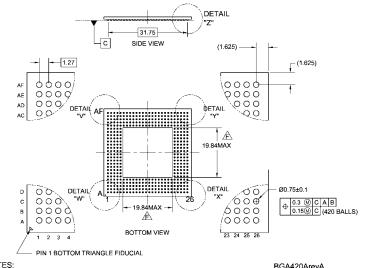

= 3.52 watts

FIGURE 15. Power Consumption Diagram for the OCX160P using LVPECL

FIGURE 16. Power Consumption Diagram for the OCX160L using LVDS

Physical Dimensions inches (millimeters) unless otherwise noted

- NOTES:
- A) ALL DIMENSIONS IN MILLIMETERS.
 CONFORMS TO JEDEC MO-149. Variation (BL-2X)
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- ROW NAMING ORDER;
- A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF COLUMN NAMING ORDER;
- $2\; 3\; 4\; 5\; 6\; 7\; 8\; 9\; 10\; 11\; 12\; 13\; 14\; 15\; 16\; 17\; 18\; 19\; 20\; 21\; 22\; 23\; 24\; 25\; 26\; \\$
- **ENCAPSULATION SIZE WILL VARY WITH CAVITY SIZE**
- MAX STAND OFF FROM PCB AFTER MOUNTING. FREE BALL HEIGHT, NOT ATTACHED TO PCB.

420-Ball Thermally-Enhanced Ball Grid Array (TBGA), JEDEC MO-149, 1.27mm Pitch, 35mm Square Package Number BGA420A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com