
OE HYBRID

2.48832Gbps Transmitter

OD-J8660-0A01/HA01

OC-48: SR

STM-16: I-16

- Contents -

1. PRODUCT NUMBER	3
2. SPECIFICATIONS	3
2.1 ABSOLUTE MAXIMUM RATINGS	3
2.2 ENVIRONMENTAL CONDITIONS	3
2.3 OPTICAL SIGNAL INTERFACE SPECIFICATIONS	4
2.4 ELECTRICAL SIGNAL INTERFACE SPECIFICATIONS	5
3. FUNCTIONAL BLOCK DIAGRAM	6
3.1Functional.Block Diagram	6
3.2 ALARM, MONITOR AND CONTROL FUNCTION	7
4.RELIABILITY	7
4.1 FIT NUMBER	7
4.2 RELIABILITY TEST ITEMS AND CONDITIONS	7
5. PACKAGE SIZE, PIN ASSIGNMENT	8
5.1Outline diagram, Pinlayout	8
5.2 PIN ASSIGNMENT	9
6.PADLAYOUT	10
7. RECOMMENDED MOUNTING CONDITIONS	11
7.1 MOUNT PROHIBIT AREA	11
7.2 Re-FLOW SOLDERING CONDITIONS	11
7.3 SOLVENT CLEANING	12
7.4 MOUNTING PRECAUTIONS	12
7.5 DE-SOLDERING FROM THE PRINTED BOARD	12
7.6 Pigtail Attachment	12
7.7 SHIPMENT PACKING	14
8 APPLICATION PRECAUTIONS	15

1. Product Number

Product Number	Specification	Operating Case Temperature
OD-J8660-0A01	SONET OC-48 SR, and	0 to +75 deg.C
OD-J8660-HA01	ITU-T G. 957 I-16 compliant	-40 to +85 deg.C

Pigtail fiber cord is not included with the above products, it has to be separately ordered. The applicable pigtail fiber cords are listed below. Please refer to section 7.6 for connecting a pigtail cord to the above products.

Product Number	Connector Type	Fiber Cord Length
OD-S524-SC-SM	SC	
OD-S524-FCPC-SM	FC	51 to 55 cm
OD-S524-MUJ-SM	MUJ	

2. Specifications

2.1 Absolute Maximum Ratings

Danamatan	Speci	fication	I Init	NI - 4 -
Parameter	Min	Max	— Unit	Note
Supply Voltage (Vcc)	-0.3	+4.0	V	
Storage temperature	-40	+85	deg.C	
RF Input Pins (AC-coupled, 50 ohms)	0	+1.2	Vpp	Pin 11: CLK IN Pin 13: CLK INB Pin 18: DATA IN Pin 20: DATA INB
Input pins (Except for RF input pins)	0	Vcc	V	

2.2 Environmental Conditions

Parameter	Specification	Note
Data Rate	2.48832 Gbps	
Data Format	Scrambled NRZ	Scrambler is not included.
Transmission Cable	Single-mode fiber	SI-10/125
Operating Case	0 to +75 deg.C	OD-J8660-0A01
Temperature	-40 to +85 deg.C	OD-J8660-HA01
Supply Voltage	+3.3V +/-5%	
Power Consumption	0.33 W (Typ)	Under condition at +25 deg.C, +3.30V
	0.6 W (Max)	Under condition at +85deg.C, +3.47V

2.3 Optical Signal Interface Specifications

Damamatan	Specifi	ication	TT24	NI - 4 -
Parameter	Min	Max	Unit	Note
Average Optical Output Power	-10	-3	dBm	
Extinction Ratio	8.2	-	dB	
RMS Spectral Width	-	4	nm	
RMS Center Wavelength	1266	1360	nm	
Optical Output Eye Diagram	ITU-T G.957 compliant			Refer to fig. 1
Laser Diode Classification	IEC 60825-1 Class 1 compliant			
Optical Signal Polarity	Positive logic			

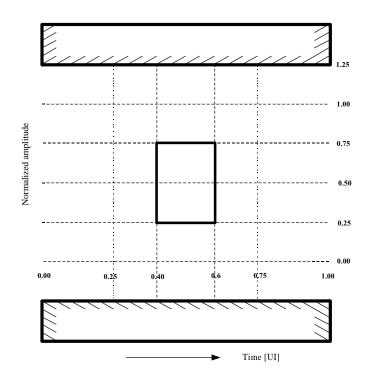


Fig. 1 Optical output signal mask specifications of SONET/ITU standard specified by the waveform after passing through 4th order Bessel-filter which has cut-off frequency of $2.48832 \text{GHz} \times 0.75$.

2.4 Electrical Signal Interface Specifications

[Data and Clock Input]

D	Specific	ation	TT . •4	Note
Parameter	Min	Max	Unit	
	500	2000	mVpp	
Input Signal Level	DATA IN [CLK IN] AC-coup Differen DATA INB [CLK INB] AC-coup Differen			
	(DATA IN) - (DATA INB) ,	(CLK IN) - (CLK INB) 500mVpp min 2000mVpp max		
Data and Clock Signal	DATA IN			
	CLK IN			
	-100 ps < t	< 100 ps		

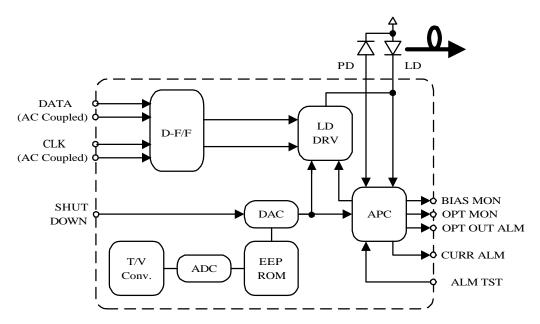
[Alarm Output (OPT OUT ALM, CURR ALM)]

Parameter	Specification			Unit	Note
		Min	Max	Omt	Note
Output level	VOH	2.4	Vcc	V	
Output level	VOL	0	0.5	V	
Status	'L'	Fault condition			
Status	'H'	Normal condition			
Fan-out	IOH -0.2		mA		
Tun out	IOL	0	.2	mA	

[Control input (SHUT DOWN)]

Parameter		Specification			Note
		Min	Max	- Unit	11010
Output level	VIH	0.7 x Vcc	Vcc	V	
Output level	VIL	0	0.3 x Vcc	V	
Status	'L'	Optical output disable			
Status	'H' Optical output enable				

[Control input (CURR ALM TST)]


Parameter	Specification		
Status	When CURR_ALM_TST is connected to GND, CURR ALM will be asserted to 'L'.		
Status	Leave open in normal operation.		

[Performance Monitor]

Parameter	Specification		Note
OPT MON	550 (max.)	mV	Voltage output. Please receive with high impedance (>1M ohms) circuit.
BIAS MON	42 x Ib (Ib: Laser bias compensation current:[mA]	mV	Voltage output. Please receive with high impedance (>1M ohms) circuit.

3. Functional Block Diagram

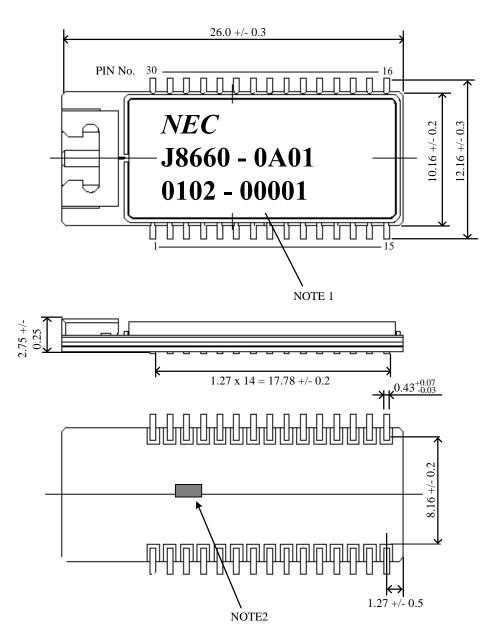
3.1Functional Block Diagram

D-F/F: D flip-flop, LD DRV: Laser diode driver, DAC: Digital to analogue converter, T/V Conv.: Temperature to voltage converter, APC: Automatic power control circuit ADC: Analogue to digital converter, EEPROM: Electronic erasable ROM, PD: PIN photo diode, LD: 1.3 um Fabry-Perot laser diode

3.2 Alarm, monitor and control function

Parameter	Symbol	Function
Optical output power loss alarm	OPT OUT ALM	To alert loss of power condition. Alarm does not assert
optical output power loss araim	Of I OUT THEM	until power degradation exceeds 3 dB.
		To alert laser degradation. Alarm asserts when laser
Laser degrade alarm	CURR ALM	bias compensation current (Ib) increases by 25 mA +/-
		5 mA from the initial value.
Laser shut down	SHUT DOWN *	To shutdown laser output.
Current alarm test	CURR ALM TST	To test CURR ALM function. When connected to
Current afaint test	CURR ALM 151	GND, CURR ALM is forced to active 'L'.
		To monitor laser bias compensation current (Ib). The Ib
Laser bias current monitor	BIAS MON	is calculated from output voltage (Vo) of this terminal;
		Ib=Vo/42mA. Initial value is nearly 0V.
Onticel output power monitor	OPT MON	To monitor the voltage that is proportional to optical
Optical output power monitor	OF I MON	launched power.

^{*} In the event of the loss of signal (data and clock), laser output status is undefined. The SHUT DOWN is required to disable the laser radiation.


- 4. Reliability
- 4.1 FIT Number T.B.D.

4.2 Reliability Test Items and Conditions

Item	Condition		
Accelerated aging	+85 deg.C, +3.465 V, 5000 hours		
Temperature cycle	-40 to +85 deg.C, 4 h/cycle, 500 cycles		
Damp heat	+85 deg.C, 85%RH, 500 hours		
Vibration	10 to 55 Hz, 1.5 mm, 1 hour for x, y, z each direction		
Mechanical shock	50 G, 11 ms, 3 times for x, y, z each direction		
Thermal shock	0 and +100 deg.C in water, 5 minutes each temperature, 20 cycles		
Low temperature storage	ge -40 deg.C, 2000 hours		

- 5. Package size, Pin Assignment
- 5.1Outline diagram, Pin layout

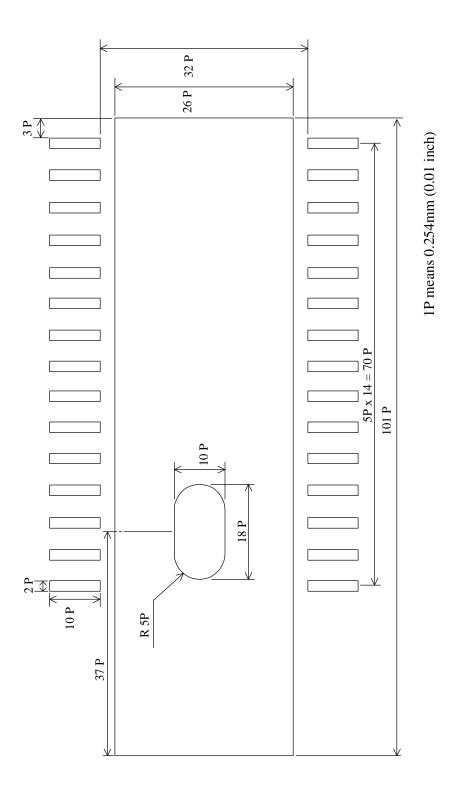
(Unit in mm)

Note1 Product name description is given below:

NEC :NEC logo mark
J8660-*A01 :Product Number

****-**** :Production year/month-serial number

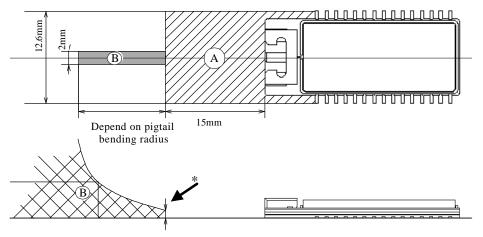
Note 2 Product testing terminal: Please keep open and don't connect to any other pattern or GND.


5.2 Pin Assignment

Pin No.	Symbol	I/O	Note
1	Vcc	I	+3.3 V
2	GND	I	
3	OPT MON	О	Optical output power monitor
4	NC		(Leave open)
5	SHUT DOWN	I	Laser shutdown. Active 'L'
6	GND	I	
7	Vcc	I	+ 3.3 V
8	CURR ALM	О	Laser bias current alarm
9	OPT OUT ALM	0	Laser degrade alarm
10	GND	I	
11	CLK IN	I	Clock signal input. AC coupled.
12	GND	I	
13	CLK INB	I	Inverted clock signal input. AC coupled.
14	GND	I	
15	GND	I	
16	GND	I	
17	GND	I	
18	DATA IN	I	Data signal input. AC coupled
19	GND	I	
20	DATA INB	I	Inverted data signal input. AC coupled
21	BIAS MON	О	Laser bias current monitor.
22	EXTC		Connect 0.1 uF capacitor to ground.
23	CURR ALM TST	I	Current alarm test.
24	GND	I	
25	GND	I	
26	GND	I	
27	GND	I	
28	GND	I	
29	Vcc	I	+3.3 V
30	GND	I	

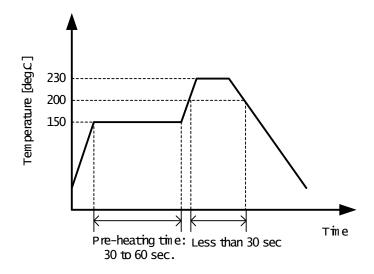
I: input terminal, O: output terminal

6. Pad layout



11th September 2001 Rev. 0.2, Preliminary

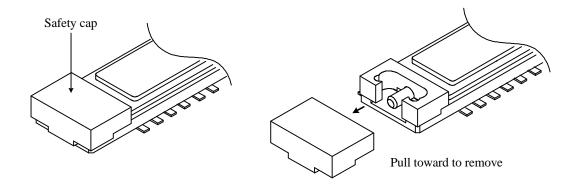
7. Recommended Mounting Conditions


7.1 Mount prohibit area

- a) 'A' is necessary space for the pigtail connection tool. Keep this area (12.6mm x 15.0mm) empty.
- b) 'B' is space for pigtail cord. Keep the bending radius of pigtail cord more than 30mm.
- c) Start bending pigtail cord after '*' point.

7.2 Re-flow Soldering Conditions

- a) Soldering temperature: At the temperature more than +200 deg.C, the time should be less than 30 sec., +230 deg.C max.
- b) Pre-heating time: That is not specified particularly (depends on PCB). Typically +150 deg.C, 30 to 60 sec. c) Temperature rise and falling time: less than 5 deg.C/ sec.


7.3 Solvent Cleaning

Solvent cleaning is not recommended.

7.4 Mounting Precautions

Do not remove safety cap over the ferrule at the time of re-flow soldering.

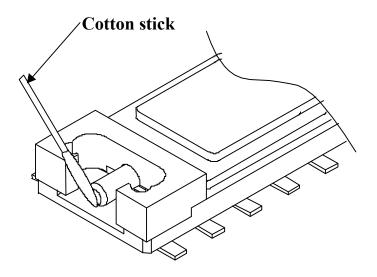
Please remove the safety cap after re-flow soldering.

Safety cap mounted position

Safety cap removed position

7.5 De-soldering from the Printed Board

The product performance is not guaranteed in case of de-soldering from a PCB. If it is necessary to de-solder, Please detach pigtail in advance. Pigtail can be used again.

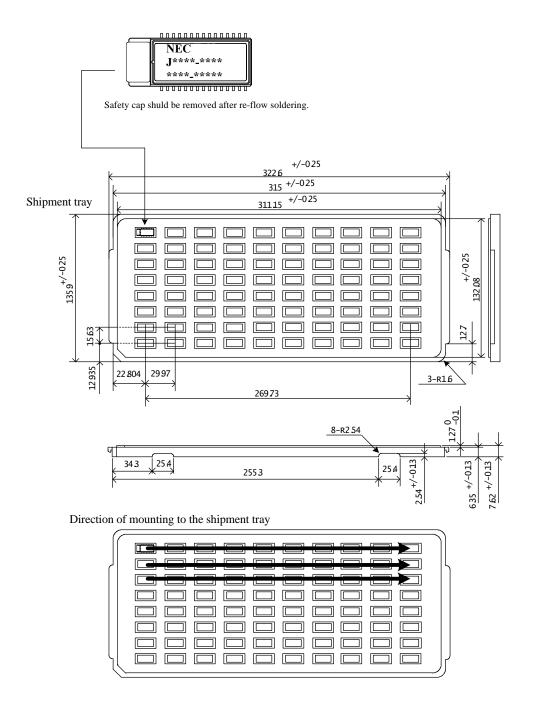

7.6 Pigtail Attachment

Pigtail should be attached after soldering the product on PCB. Please pay attention to following points while attaching a pigtail:

- a) To attach pigtail use pigtail attach / detach tool specially designed for this device.
- b) Please refer to instruction manual of pigtail attach / detach tool for details. (Supplied separately)
- c) Ferrule may be broken upon applying excess strength and its characteristics may be changed. Don't stretch or bend pigtail cord more than specified values. Recommended value for stretch is less than 200gf and bending radius should be more than 30 mm.

d) Please clean the ferrule surface by a cotton stick before attaching a pigtail.

Recommended cotton stick


Maker :NTT ME

Product name :CLETOP stick type

Product Number :14100400

7.7 Shipment Packing

8. Application Precautions

- a) To prevent optical connector surface from crack or stain, please put the dust cap while this device is not in use. When the connector surface is stained, please wipe with a kind of lens paper.
- b) The bending radius for pigtail fiber cord should be more than 30mm.
- c) Optical components are mounted inside this device. Please handle with care. Mechanical shock due to falling could lead permanent damage.
- d) The device performance given in this manual is guaranteed for correct applications. Device performances are not guaranteed under incorrect use.
- e) Sudden heating or cooling by dryer or cooling spray could lead permanent damage to the device. The device may not work normally while sudden heating or cooling.
- f) This product should be handled as a CMOS product.