OTC-045

35-BIT LED DISPLAY DRIVER

DATE: December 5, 2001

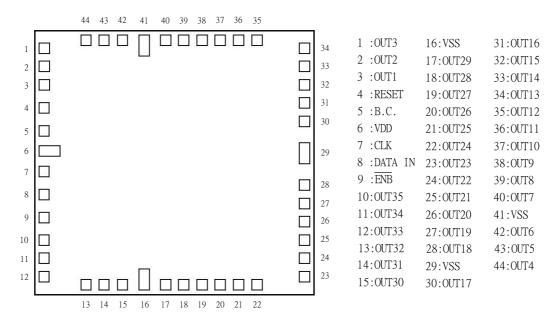
FEATURES

- CMOS technology
- Continuous brightness control
- Serial data input
- No load signal required
- Optional external data enable and reset
- Wide power supply operation (3.5V to 12V)
- TTL compatibility
- 34 or 35 outputs, 20mA sink capability
- Alphanumeric capability

APPLICATIONS

- Products with alphanumeric LED displays such as digital clock, counter, radio, multimeter, etc.
- Industrial control indicator or instrumentation readout
- Relay driver

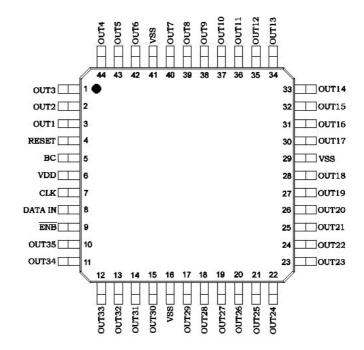
ORDERING INFORMATION


PART NO.	PACKAGE	NOTE		
OTC-045	-	CHIP FORM		
OTC-045Q	44-PIN LQFP	-		

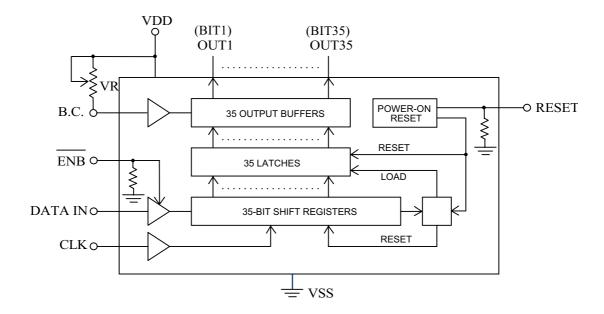
ABSOLUTE MAXIMUM RATINGS

Ta=+25°C, UNLESS OTHERWISE SPECIFIED							
CHARACTERISTICS	SYMBOL	RATING	UNIT				
Supply Voltage	VDD	+3.5 ~ +12	V				
Clock Frequency	Fclk	4M	Hz				
Input Voltage	VIN	-0.3 ~ VDD+0.3	V				
Input B.C. Current	IBC	700	μΑ				
Output Sustaining Voltage	Vds	10	V				
Output Continuous Current	Iout	25	mA				
Power Dissipation Per Output	Pdiss	25	mW				
Operating Temperature	Topr	-40 ~ +85	$^{\circ}\!\mathbb{C}$				
Storage Temperature	Tstr	-60 ~ +150	$^{\circ}\!\mathbb{C}$				

PAD/PIN ASSIGNMENT (TOP VIEW)

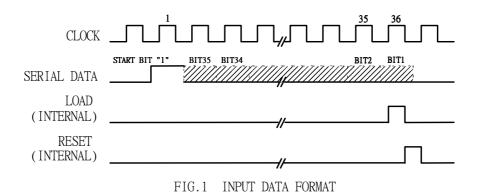

— Pad Assignment (Chip Form)

Die Size: $2770 \text{um} \times 2610 \text{um} (W \times H)$


— Pin Assignment (LQFP)

■ PAD/PIN DESCRIPTIONS

PIN NO.	PAD/PIN NAME	TYPE	DESCRIPTION
6	VDD	Power	Power
16,29,41	VSS	Ground	Ground
4	RESET	Input	Reset signal input, (Normally grounded)
5	B.C.	Input	DC current input for LED brightness control
7	CLK	Input	Clock input
8	DATA IN	Input	Serial data input
9	ENB	Input	Data input enable, (Normally grounded)
1,2,3;10~15	OUT1~OUT35	Output	Open-drain NMOS output drivers
17~28;30~40			
42,43,44			


FUNCTION DESCRIPTIONS

The OTC-045 is designed to drive either 4 or 5-digit, common anode alphanumeric LED displays with the added benefit of requiring minimal interface with the display or data source.

Data is transferred serially via 2 signals: clock and serial data. Data transfer without the added inconvenience of an external load signal is accomplished by using a format of a leading "1" followed by the allowed 35 data bits. These 35 data bits are latched after the 36th clock has been transferred. This scheme provides non-multiplexed, direct drive to the LED display. Characters currently displayed (thus, data output) changes only if the serial data bits differ from those previously transferred. Display brightness is determined by control of the output current for LED displays. This control function can be achieved by varying the current flowing into B.C. terminal. A simple way is to set an external variable resistor illustrated in the block diagram. Typically, the output current is 36 times greater that current into B.C. terminal.

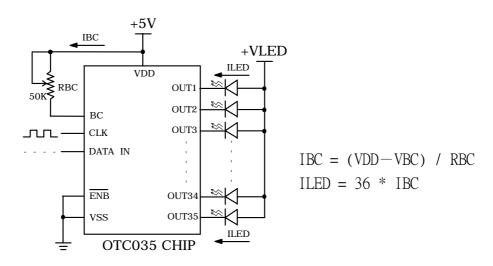


Figure 1 shows the input data format. A leading "1" is followed by 35 bits of data. After the 36th had been transferred, a load signal is generated synchronously with the clock high state. This loads the 35 bits of data into the latches. A reset signal is generated consecutively with the clock low, which clears all shift registers for the next set of data. All shift registers are static master-slave, with no clear for the master portion of the first register, allowing continuous operation. There must be a complete 36 clocks or the shift registers will not clear.

When the chip first powers on an transient high state of internal power on reset signal is generated which clears all shift registers and latches. The start bit and the first clock return the chip to its normal operation. The 'RESET' input terminal is also available for an option to clear all shift registers and latches by an external pulse.

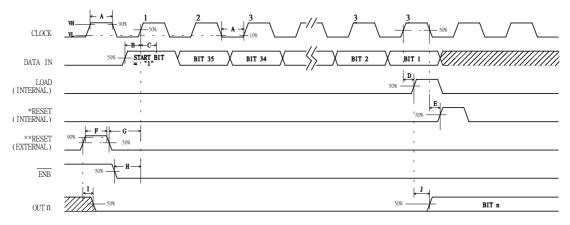
TYPICAL APPLICATION CIRCUIT

RECOMMENDED OPERATING CONDITIONS

VDD=+5V, Ta=+25℃, UNLESS OTHERWISE SPECIFIED									
CHARACTERISTICS	SYMBOL	MIN	TYP	MAX	UNIT				
Supply Voltage	VDD	4.5	5	9	V				
Clock Frequency	FCLK	-	500K	2M	Hz				
Input B.C. Current	IBC	0	-	550	μ A				
Output Sustaining Voltage	VDS	-	-	9	V				
Output Continuous Current	IOUT	-	-	20	mA				
Power Dissipation Per Output	PDISS	-	-	20	mW				

DC ELECTRICAL CHARACTERISTICS

VDD=+5V, Ta=+25℃, UNLESS OTHERWISE SPECIFIED								
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT			
Power Supply,VDD		3.5	-	12	V			
Power Supply Current	VDD=5V, Excluding output	-	-	5	mA			
Logic Input Voltages,VIH	VDD=5V	0.8VDD	VDD	VDD+0.3	V			
VIL	VDD=5V	VSS-0.3	VSS	0.2VDD	V			
Brightness Input,IBC		0	-	550	μ A			
Brightness Input Voltage	Input Current, IBC=550 μA	3.0	3.2	4.0	V			
Output Current, IouT(OFF)	VOUT=3.0V	-	-	<0.5	μ A			
Output Current, Iout(ON)	VOUT=1.0V	0	-	22	mA			
	Brightness Input=0μA	0	-	<0.5	μ A			
	Brightness Input=100μA	3.5	3.6	3.7	mA			
	Brightness Input=550μA	20	21	22	mA			
Output Matching		-	-	5	%			
Clock Input Frequency, Fak		-	500K	2M	Hz			


NOTE 1: Output matching is calculated as the percent variation of each IOUT(ON)

to IOUT(AVG), where
$$IOUT(AVG) = \{\sum_{n=1}^{35} IOUT(ON)[BITn]\} \div 35$$

TIMING CHART AND TIMING CONDITIONS

— TIMING CHART

- * THE INTERNAL RESET ONLY CLEARS ALL INTERNAL SHIFT REGISTERS.
- ** THE EXTERNAL RESET CLEARS ALL INTERNAL SHIFT REGISTERS AND LATCHES.

— TIMING CONDITIONS

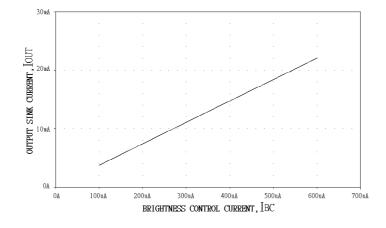
ITEM	DESCRIPTION	MIN	TYP	MAX	UNIT
A	Clock pulse width	250	-	-	nS
В	Serial data setup time	30	-	-	nS
С	Serial data hold time	30	-	-	nS
D	Time between clock activation & internal load	35	-	-	nS
	pulse activation				
Е	Time between clock falling & internal reset	35	-	-	nS
	pulse activation				
F	External reset pulse duration	25	ı	-	nS
G	External reset inactive setup time	120	-	-	nS
Н	Data enable setup time	70	-	-	nS
I	Time between external reset activation & the	25	-	-	nS
	output off				
J	Time between internal load activation & new	30	-	-	nS
	output states arising				

TRUTH TABLE

EXTERNAL			SERIAL	SHIFT	REGISTER CON	TENTS	INTERNAL	INTERNAL	LATCH CONTENTS
RESET	ENB	CLK	DATA IN	I35 I34	I33 • • • I2	I1 I0	LOAD	RESET	I35 I34 I33 · · · I2 I1
		_	Н	H R35	R34 · · · R3	R2 L	L	L	NO CHANGE
		4	L	L R35	R34 · · · R3	R2 L	L	L	NO CHANGE
L or F	L or F	الم	X	R35 R34	R33 • • • R2	Rı L	L	L	NO CHANGE
			(1) X	P35 P34	P33 · · · P2	Pı H	Н	L	P35 P34 P33 • • • P2 P1
		(1) (3) 11 (2)	(2) X	L L	L L	L L	L	Н	P35 P34 P33 • • • P2 P1
			(3) H	H L	L L	L L	L	L	P35 P34 P33 · · · P2 P1
			(3) L	L L	L L	L L	L	L	P35 P34 P33 · · · P2 P1
			X	L R35	R34 • • • R3	R2 L	L	L	NO CHANGE
		٦	X	R35 R34	R33 • • • R3	R2 L	L	L	NO CHANGE
L or F	Н		(1) X	P35 P34	P33 · · · P2	Pı H	Н	L	P35 P34 P33 • • • P2 P1
		(1) (3)	(2) X	L L	L L	L L	L	Н	P35 P34 P33 • • • P2 P1
			(3) X	L L	L L	L L	L	L	P35 P34 P33 • • • P2 P1
Н	X	X	X	L L	L L	L L	L	L	L L L · · · · L L

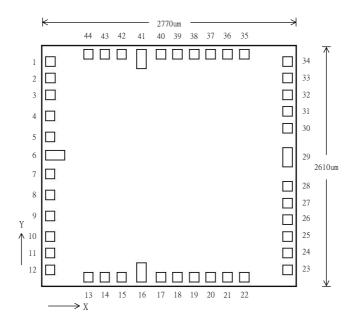
H = HIGH LOGIC LEVEL

R = PREVIOUS STATE

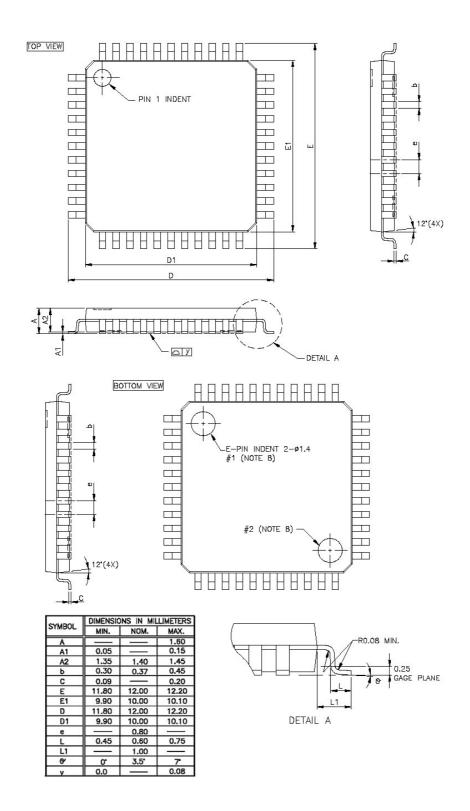

X = IRRELEVANT

L = LOW LOGIC LEVEL

P = PRESENT STATE


F = FLOATING

■ TYPICAL CHARACTERISTIC CURVES (VDD=5V, VOUT=1V)


PAD LOCATIONS AND PAD SIZE

	COORDINATE	S REFERENCE	E TO CENTER	OF PAD AND F	PAD SIZE /	ORIGION (),0) AT CENT	TER OF PAD#	12
Pad No.	Name	X	Y	Pad Size	Pad No.	Name	X	Y	Pad Size
1	OUT3	0	+2184		23	OUT23	+2495	0	
2	OUT2	0	+2009		24	OUT22	+2495	+175	
3	OUT1	0	+1834	100X BY 100Y	25	OUT21	+2495	+350	
4	RESET	0	+1616		26	OUT20	+2495	+526	100X BY 100Y
5	B.C.	0	+1396		27	OUT19	+2495	+702	
6	VDD	+50	+1202	200X BY 100Y	28	OUT18	+2495	+876	
7	CLK	0	+1004		29	VSS	+2495	+1180	100X BY 200Y
8	DATA IN	0	+784		30	OUT17	+2495	+1485	
9	ENB	0	+564		31	OUT16	+2495	+1660	
10	OUT35	0	+350		32	OUT15	+2495	+1834	
11	OUT34	0	+175	100X BY 100Y	33	OUT14	+2495	+2010	
12	OUT33	0	0		34	OUT13	+2495	+2185	
13	OUT32	+400	-76		35	OUT12	+2040	+2260	100X BY 100Y
14	OUT31	+576	-76		36	OUT11	+1865	+2260	
15	OUT30	+751	-76		37	OUT10	+1690	+2260	
16	VSS	+957	-26	100X BY 200Y	38	OUT9	+1514	+2260	
17	OUT29	+1164	-76		39	OUT8	+1340	+2260	
18	OUT28	+1340	-76		40	OUT7	+1164	+2260	
19	OUT27	+1515	-76	100X BY 100Y	41	VSS	+957	+2210	100X BY 200Y
20	OUT26	+1690	-76	100% DI 1001	42	OUT6	+750	+2260	
21	OUT25	+1865	-76		43	OUT5	+576	+2260	100X BY 100Y
22	OUT24	+2040	-76		44	OUT4	+400	+2260	

PACKAGE INFORMATION

OPTO TECH CORPORATION

NO.8 INNOVATION ROAD 1, HSINCHU SCIENCE-BASED INDUSTRIAL PARK, HSINCHU 30077, TAIWAN, R. O. C.