

Product Bulletin

The OTPDR2001-LR is a mechanically compliant 300 pin MSA, SONET OC-192/GR-1377 transceiver/transponder. The transceiver/ transponder uses a LiNbO, modulator and a CW laser. The modules are available with 0, 3, or 7 dBm of optical output power. The features of the transceiver/transponder include integrated electrical mux (performs parallel electrical to serial optical signal conversion), and a demux that performs a serial optical to parallel electrical conversion. The transceiver/transponder is available with wavelengths on the ITU grid (200, 100, and 50 GHz spacing), as well as an integrated high sensitivity PIN or APD receiver. The unit is fully compliant to OIF 99.102.8 specifications. The long reach module has one of the smallest standard form factor packages in the industry, $(3.5 \times 4.5 \times 0.53)$ inches), and has the identical form factor as its short, intermediate and extended reach counterparts.

The Long Reach is designed for the following typical link budgets:

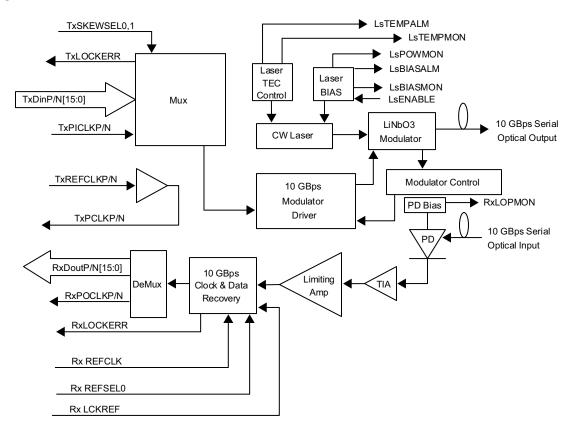
1550 nm TDM 7 dBm with APD 30 dB, 1550 nm DWDM 3 dBm with APD 26 dB, 1550 nm DWDM 0 dBm with APD 23 dB.

The electrical interface consists of 16 differential LVDS lines of data at 622.08, 645, or 666.51 Mb/s in both the transmit and receive directions. The optical interface is a 9.95328 Gb/s SONET optical,

OTPDR2001-LR 10 Gb/s OC - 192 MSA Transceiver/Transponder Long Reach

10.333 Gb/s ethernet or 10.7 Gb/s FEC (forward error correction) transport which can transmit and receive through lengths up to 100 km of single-mode fiber.

Key Features


- Mechanically compliant with the 300 pin multisource agreement (MSA)
- SONET OC-192 / GR-1377 compliant
- Link budgets up to 30 dB
- Integrated 10 Gb/s optical transmitter and receiver with dual rate 16-channel mux/demux
- Receiver sensitivity PIN –14 dBm optical input power (@BER = 10⁻¹²)
- APD -24 dBm optical input power (@BER = 10⁻¹²)
- No DC power sequencing required
- Low power dissipation
- Available in FEC rate and 10 G ethernet versions

Applications

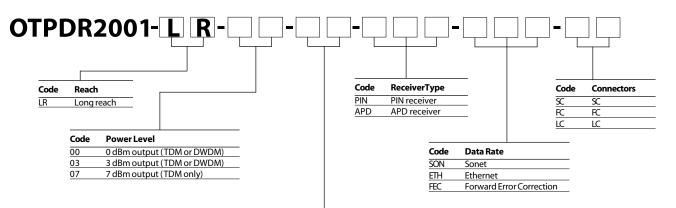
- Telecommunications:
 - Long haul networks
 - Metropolitan area networks
 - Long reach ethernet
- High bit-rate data communications

OTPDR2001-LR | 2

Configuration

Specifications

Parameter	Symbol	Minimum	Typical	Maximum
Operating case temperature	Тс		0 to 65 °C	
Total power dissipation	P		14 W	
3.3 V supply voltage	Vdd	3.13 V	3.30 V	3.47 V
Vdd current drain	Idd		0.9 A	
5 V supply voltage	Vcc	4.75 V	5.00 V	5.25 V
Vcc current drain	Icc		0.05 A	
-5.2 V supply voltage	Vee.	-5.46 V	-5.20 V	-4.75 V
Vee current drain	Iee		2.1A	


Transceivers Pin Out Notes

Symbol	I/O	Type	Description		
TxDinP/N[15:0]	I	LVDS	Parallel data input to the transmitter.		
TxPICKLP/N	I	LVDS	Parallel input clock to the transmitter.		
TxREFCLKP/N	I	LVPECL	Transmitter reference clock used to generate TxPCLK. Internally AC coupled.		
TxPCLKP/N	О	LVDS	Transmit parallel output clock used to drive framer.		
TxSKEWSEL0	I	LVTTL	Adjusts skew of TxPICLK (LSB)		
TxSKEWSEL1	I	LVTTL	Adjusts skew of TxPICLK (MSB)		
RxREFCLKP/N	I	LVPECL	Receiver reference clock used to verify RxPOCLK. Internally AC coupled.		
RxDoutP/N[15:0]	О	LVDS	Parallel data output from the receiver.		
RxPOCLKP/N	О	LVDS	Parallel output clock from the receiver.		
RxLCKREF	I	LVTTL	Locks RxPOCLK to RxREFCLK (active low).		
RxLOCKERR	О	LVTTL	Receiver PLL lock detector is logic-low when the receiver PLL circuit is out of lock.		
TxLOCKERR	О	LVTTL	Transmitter PLL lock detector is logic-low when the transmitter PLL circuit is out of lock.		
LsPOWMON	О	Analog	Laser power monitor voltage is normalized (0.5 V) at the beginning of life relative to the		
			initial optical output power. The 50% drift in output power correlates to a 50% variation		
			on the laser power monitor voltage.		
RxLOPMON	О	Analog	Input power monitor voltage is proportional to the optical mean power detected. 3 mV/µA		
RxREFSEL0	I	LVTTL	Receiver reference frequency selector when logic low selects 155.52 MHz, when logic high		
			selects 622.08 MHz (SONET rate).		
LsBAISMON	О	Analog	Laser bias current voltage is proportional to the laser current. 5 mV/µA		
LsENABLE	I	LVTTL	When transmitter laser enable is logic-low the laser is enabled. When logic-high, the		
			laser is disabled.		
LsBIASALM	О	LVTTL	Laser degraded alarm; the digital alarm output will shift from logic-high to logic-low state		
			when the laser approaches its end of life condition.		
LsTEMPALM	О	LVTTL	Laser temperature. Normal operating is logic-high. Alarm actives (logic-low) when		
			temperature is approximately 2.5 °C above or below normal temperature.		

Ordering Information

Indicate your requirements by selecting one option from each configuration table. Please print the corresponding codes in the available boxes to form your part number. For more information on this or other products and their availability, please contact your local JDS Uniphase sales representative or JDS Uniphase directly at 215 328-6500, by fax at 215 675-8414, or via e-mail at sales.pa@us.jdsuniphase.com. Visit our Web site at www.jdsuniphase.com.

Sample: OTPDR2001-LR-00-62-PIN-SON-LC

Code	Frequency (GHz)	Wavelength (nm)	Code	Frequency (GHz)	Wavelength (nm)
16	191600	1564.68	40	194000	
17	191700	1563.86	41	194100	1544.53
18	191800	1563.05	42	194200	1543.73
19	191900	1562.23	43	194300	1542.94
20	192000	1561.42	44	194400	1542.14
21	192100	1560.61	45	194500	1541.35
22	192200	1559.79	46	194600	1540.56
23	192300	1558.98	47	194700	1539.77
24	192400	1558.17	48	194800	1538.98
25	192550	1557.36	49	194900	1538.19
26	192600	1556.55	50	195000	1537.40
27	192700	1555.75	51	195100	1536.61
28	192800	1554.94	52	195200	1535.82
29	192900	1554.13	53	195300	1535.04
30	193000	1553.33	54	195400	1534.25
31	193100	1552.52	55	195500	1533.47
32	193200	1551.72	56	195600	1532.68
33	193300	1550.92		195700	1531.90
34	193400	1550.12	58	195800	1531.12
35	193500	1549.32	59	195900	1530.33
36	193600	1548.51	60	196000	1529.55
37	193700	1547.72	61	196100	1528.77
38	193800	1546.92	62	196200	1527.99
39	193900	1546.12			

Frequencies are accurate values, wavelengths are dependent on the media properties

