

OPF5020 10 Mb/s, 100 Mb/s Short Wavelength MT-RJ Transceiver

Features

- Small Form Factor allows dense backplanes
- Allows same port density as copper based RJ-45 modular jacks
- Low cost 850 nm LED design
- Supports 10 BASE-FL and 100 BASE-SX data rates
- Surface mountable

Description

Optek's OPF5020 is based on the industry standard MT-RJ format for fiber optic transceivers. Its small size and intuitive connector latching design allows for higher density implementations and easier end user installation.

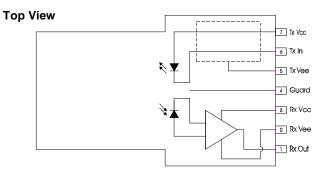
The transmitter is an 850 nm GaAIAs LED, configured for optimum transceiver performance when used in conjunction with a low-side driver. The high coupling efficiency of the LED and optical system allows the device to be used at low current drive levels reducing power consumption and increasing system reliability.

The receiver is comprised of a high speed photodiode coupled to a low noise transimpedance amplifier. The receiver output is a low impedance analog source. The analog representation of the received optical input is externally translated to ECL/TTL levels for use in digital modes up to 125 MBaud, NRZ.

Combining the OPF5020 with commercially available LED driver and postamp/data-quantizer circuits can provide a physical layer medium dependent sublayer (PMD) for communication between nodes of a fiber network. Application Bulletin 217 presents an example PMD design with typical receiver sensitivity of -30 dBm at a bit-error-rate of 2.5 x 10^{-10} , operating full duplex 100BASE-SX with either a 2^{23} -1 or worst case FDDI data pattern.

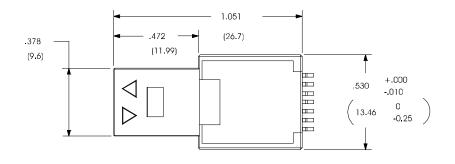
Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

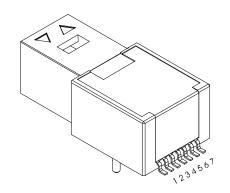
Storage	o +85°	C
Operating Temperature0° C t	o +70°	, C
Solder Temperature (Soldering Iron, 10 sec.)	. 260°	C
Solder Temperature (Vapor Phase Reflow, 30 sec.)	. 235°	C

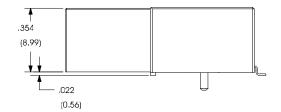

Transmitter

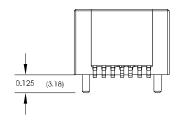
Forward Input Current (DC).	 	 	 		 	 				 		100) m	Α
Reverse Input Voltage	 	 	 		 	 				 		(3.5	V

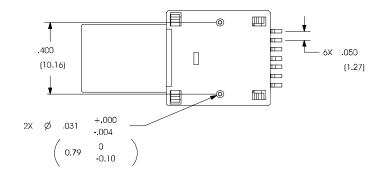
Receiver

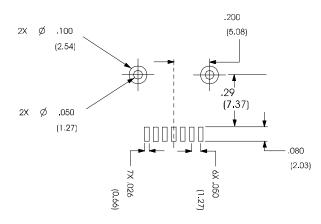

Supply Voltage (Rx Vcc - Rx Vee)	 3 V
Output Current	 nΑ


All transmitters are subject to 100% burn in testing. Test conditions are 96 hours at 60 mA continuous current in 85° C ambient.




This component is susceptible to damage from electrostatic discharge (ESD). Normal static precautions should be taken in handling and assembly of this component to prevent ESD damage or degradation.


Visit our website at www.optekinc.com or email us at mt-rj@optekinc.com



PIN	FUNCTION
7	Tx Vcc
6	Tx In
5	Tx Vee
4	Guard
3	Rx Vcc
2	Rx Vee
1	Rx Out

DIMENSIONS ARE IN INCHES (mm).

DIMINSIONS FOR PCB LAYOUT

FIBER OPTIC

Type OPF5020

Electrical Characteristics ($T_A = 0$ to 70° C, Rx Vee = 0.00 V, 4.75 \leq Rx Vcc \leq 5.25)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Transmitt	er					
VF	Forward Voltage	1.3	1.7	2.1	V	I _F = 60 mA
V_{BR}	Reverse Input Breakdown Voltage	3.5	9.0		V	I _R = 100 μA
λр	Peak Emission Wavelength	820	840	865	nm	I _F = 60 mA
λ_{BW}	Spectral Bandwidth (full width; half max.)			60	nm	I _F = 60 mA
Ст	Diode Capacitance		55		pF	V = 0, f = 1 MHz
$\Delta P_T/\Delta T$	Optical Power Temperature Coefficient		-0.008		dBm/°C	I _F = 60 mA
P_{T}	Peak Output Optical Power ⁽¹⁾	-16.0	-12.0	-9.0	dBm	IF = 60 mAdc
t _r , t _f	Rise Time, Fall Time ⁽²⁾ (10% to 90%)		3.5	6.5	ns	IF = 60 mA, No pre-bias
Receiver						
R_P	Responsivity ⁽³⁾⁽⁴⁾	5.3	7.0	11.4	mV/μW	$\lambda p = 840 \text{ nm}, P_R = 63 \mu W$
V_{NO}	RMS Output Noise Voltage		530		μV	Noise Bandwidth = 100 MHz, $P_R = 0 \mu W$
P_N	Equivalent Optical Noise Input Power (RMS)		-41.0		dBm	Noise Bandwidth = 100 MHz
P _{R(MAX)}	Maximum Input Optical Power ⁽³⁾⁽⁴⁾⁽⁵⁾	75			μW	
Z _O	Output Impedance		30		Ω	f = 50 MHz
V _{Odc}	DC Output Voltage	1.25	1.70	2.45	V	P_R = 0 μW, R_{LOAD} = 500 Ω to Rx Vee
Icc	Power Supply Current		9	15	mA	R _{LOAD} = Open
t_r,t_f	Rise Time, Fall Time ⁽³⁾⁽⁴⁾ (10% to 90%)		3.5	6.5	ns	$P_R = 63 \mu W$, $C_{LOAD} = \le 15 pF$
DCD	Duty Cycle Distortion ⁽³⁾⁽⁶⁾		0.4	1.2	ns	P _R = 75 μW
BW	Bandwidth	100	125		MHz	-3 dB Electrical

^{*}Typical values are at $T_A = 25^{\circ}$ C with Rx Vcc - Rx Vee = 5.00 V.

NOTES:

- (1) Coupled optical power using a 2 to 5 meter length of 62.5/125 µm fiber cable, N.A. = 0.275.
- (2) Rise and fall times shown here are valid for a 50 Ω driver impedance. Rise and fall times obtained using commercial LED driver circuits can be significantly lower. Refer to Application Bulletin 217.
- (3) P_{R} is defined as average coupled optical power at the receiver input.
- (4) Square wave light input: 12.5 MHz; (tr and tf) \leq 2.0 ns; extinction ratio \leq 10%; AC coupled, 500 Ω load to Rx Vee.
- (5) Defined with DCD \leq 1.2 ns.
- (6) Square wave light inpupt: 50 MHz; (tr and tf) \leq 2.0 ns; extinction ratio \leq 10%; AC coupled, 500 Ω load to Rx Vee.

REEL

Material: Antistatic, Type 'A', 56mm LOKREEL

Diameter: 13 inches (325mm) Hub Diameter: 4 inches (100mm)

Hub Width: 56.5mm

Surface: 10¹¹ ohm/sq (maximum rating)

POCKET TAPE

Material: Antistatic, HMS-10-13-A

Width (W): 56mm

Pitch (P): 24mm (pocket to pocket)

Sprocket Pitch: 4mm

Pocket Depth(K₀): 0.43 inches (10.92mm)

COVER

Material: Conductive, pressure-sensitive

Width: 49.5mm

OTHER PROPERTIES

Parts Per Reel: 200 Leader: 17 pockets