NPN Silicon Phototransistors Types OP800WSL, OP801WSL, OP802WSL #### **Features** - Wide receiving angle - Variety of sensitivity ranges - · Enhanced temperature range - TO-18 hermetically sealed package - Mechanically and spectrally matched to the OP130W and OP231W series emitters #### Description The OP800WSL series device consists of an NPN silicon phototransistor mounted in a hermetically sealed package. The wide receiving angle provides relatively even reception over a large area. TO-18 packages offer high power dissipation and superior hostile environment operation. #### Replaces OP800W and K5201 series ## **Absolute Maximum Ratings** (T_A = 25° C unless otherwise noted) | Collector-Emitter Voltage | |--| | Emitter-Collector Voltage | | Continuous Collector Current 50 mA | | Storage Temperature Range65° C to +150° C | | Operating Temperature Range65° C to +125° C | | Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering | | iron] | | Power Dissipation | | Notes: | - (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. - (2) Derate linearly 2.5 mW/° C above 25° C. - (3) Junction temperature maintained at 25° C. (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source. #### **Typical Performance Curves** #### Typical Spectral Response # HOTOSENSORS # Types OP800WSL, OP801WSL, OP802WSL Electrical Characteristics (T_A = 25° C unless otherwise noted) | SYMBOL | PARAMETER | | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |-----------------------------------|--------------------------------------|----------------------------------|-------------------|------------|------|----------------|--| | I _{C(ON)} ⁽³⁾ | On-State Collector Current | OP800WSL
OP801WSL
OP802WSL | 0.3
0.5
2.5 | | 3.0 | mA
mA
mA | V _{CE} = 5 V, E _e = 5 mW/cm ²⁽⁴⁾ | | ICEO | Collector Dark Current | | | | 100 | nA | V _{CE} = 10 V, E _e = 0 | | V _(BR) CEO | Collector-Emitter Breakdown Voltage | | 30 | | | V | I _C = 100 μA | | V _{(BR)ECO} | Emitter-Collector Breakdown Voltage | | 5.0 | | | V | I _E = 100 μA | | VCE(SAT)(3) | Collector-Emitter Saturation Voltage | | | | 0.40 | V | $I_C = 0.15 \text{ mA}, E_e = 0.5 \text{ mW/cm}^{2(4)}$ | | t _r | Rise Time
Fall Time | | | 7.0
7.0 | | μs
μs | V_{CC} = 5 V, I_C = 0.80 mA, R_L = 100 Ω , See Test Circuit | ### **Typical Performance Curves** Switching Time **Test Circuit**