GaAlAs Hermetic Infrared Emitting Diodes Types OP231W, OP232W, OP233W #### **Features** - · Wide irradiance pattern - · Enhanced temperature range - Mechanically and spectrally matched to the OP800WSL and OP830SL series devices - Significantly higher power output than GaAs at equivalent drive currents - TO-46 hermetically sealed package #### Description The OP231W series devices are 890nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed packages. The broad irradiance pattern provides relatively even illumination over a large area. #### Replaces K6300 series ### Absolute Maximum Ratings (T_A = 25° C unless otherwise noted) | Reverse Voltage 2.0 V | |--| | Continuous Forward Current | | Peak Forward Current (2 μs pulse width, 0.1% duty cycle) | | Storage Temperature Range65° C to +150° C | | Operating Temperature Range65° C to +125° C | | Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering | | iron] | | Power Dissipation | | Notes | - (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. - (2) Derate linearly 2.0 mW/° C above 25° C. - (3) E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the measurement surface, a radius of 0.466" (11.84 mm) measured from the lens side of the tab to the sensing surface, and a sensing surface of 0.250" (6.35 mm) in diameter forming a 30° cone. E_{e(APT)} is not necessarily uniform within the measured area. - (4) Measurement made with $100\mu s$ pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an IF = 100 mA. Carrollton, Texas 75006 ## Types OP231W, OP232W, OP233W Electrical Characteristics (T_A = 25° C unless otherwise noted) | SYMBOL | PARAMETER | | MIN | TYP | MAX | UNITS | TEST CONDITIONS | | |---------------------|--------------------------------------|----------------------------|-------------------|-------|-----|--|---|--| | E _{e(APT)} | Apertured Radiant Incidence | OP231W
OP232W
OP233W | 1.5
3.5
5.0 | | 7.0 | mW/cm ²
mW/cm ²
mW/cm ² | I _F = 100 mA ⁽³⁾⁽⁴⁾
I _F = 100 mA ⁽³⁾⁽⁴⁾
I _F = 100 mA ⁽³⁾⁽⁴⁾ | | | V _F | Forward Voltage | | | | 2.0 | V | I _F = 100 mA ⁽⁴⁾ | | | l _R | Reverse Current | | | | 100 | μΑ | V _R = 2.0 V | | | λр | Wavelength at Peak Emission | | | 890 | | nm | IF = 10 mA | | | В | Spectral Bandwidth Half Power Points | | | 80 | | nm | I _F = 10 mA | | | Δλ _Ρ /ΔΤ | Spectral Shift with Temperature | | | +0.30 | | nm/°C | I _F = Constant | | | θнр | Emission Angle at Half Power Points | | | 50 | | Deg. | I _F = 100 mA | | | t _r | Output Rise Time | | | 500 | | ns | I _{F(PK)} = 100 mA, | | | tf | Output Fall Time | | | 250 | | ns | PW = 10 μs, D.C. = 10% | | #### **Typical Performance Curves**