

GaAlAs Hermetic Infrared Emitting Diodes Types OP231W, OP232W, OP233W

Features

- · Wide irradiance pattern
- · Enhanced temperature range
- Mechanically and spectrally matched to the OP800WSL and OP830SL series devices
- Significantly higher power output than GaAs at equivalent drive currents
- TO-46 hermetically sealed package

Description

The OP231W series devices are 890nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed packages. The broad irradiance pattern provides relatively even illumination over a large area.

Replaces

K6300 series

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Reverse Voltage 2.0 V
Continuous Forward Current
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)
Storage Temperature Range65° C to +150° C
Operating Temperature Range65° C to +125° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- (2) Derate linearly 2.0 mW/° C above 25° C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity within the cone formed by the measurement surface, a radius of 0.466" (11.84 mm) measured from the lens side of the tab to the sensing surface, and a sensing surface of 0.250" (6.35 mm) in diameter forming a 30° cone. E_{e(APT)} is not necessarily uniform within the measured area.
- (4) Measurement made with $100\mu s$ pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an IF = 100 mA.

Carrollton, Texas 75006

Types OP231W, OP232W, OP233W

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS	
E _{e(APT)}	Apertured Radiant Incidence	OP231W OP232W OP233W	1.5 3.5 5.0		7.0	mW/cm ² mW/cm ² mW/cm ²	I _F = 100 mA ⁽³⁾⁽⁴⁾ I _F = 100 mA ⁽³⁾⁽⁴⁾ I _F = 100 mA ⁽³⁾⁽⁴⁾	
V _F	Forward Voltage				2.0	V	I _F = 100 mA ⁽⁴⁾	
l _R	Reverse Current				100	μΑ	V _R = 2.0 V	
λр	Wavelength at Peak Emission			890		nm	IF = 10 mA	
В	Spectral Bandwidth Half Power Points			80		nm	I _F = 10 mA	
Δλ _Ρ /ΔΤ	Spectral Shift with Temperature			+0.30		nm/°C	I _F = Constant	
θнр	Emission Angle at Half Power Points			50		Deg.	I _F = 100 mA	
t _r	Output Rise Time			500		ns	I _{F(PK)} = 100 mA,	
tf	Output Fall Time			250		ns	PW = 10 μs, D.C. = 10%	

Typical Performance Curves

