# **GaAlAs Hermetic Infrared Emitting Diodes** Types OP231, OP232, OP233 #### **Features** - Enhanced temperature range - TO-46 hermetically sealed package - Mechanically and spectrally matched to OP800, OP593, and OP598 phototransistors - Specified apertured power in ranges to satisfy most applications - · Variety of power ranges #### Description The OP231 series devices are gallium aluminum arsenide infrared emitting diodes mounted in hermetic TO-46 housings. Gallium aluminum arsenide features higher radiated output than gallium arsenide at the same forward current. The wavelength is centered at 890 nm which closely matches the spectral response of silicon phototransistors. The OP231 series is lensed to provide a narrow beam angle (18° between half power points). The narrow beam angle and the specified radiant intensity of the OP231 series allow ease of design in beam interrupt applications in conjunction with the OP800 or OP598 series photosensor. Please refer to application bulletins 208 and 210 for additional design information and reliability (degradation) data. ## **Absolute Maximum Ratings** (T<sub>A</sub> = 25° C unless otherwise noted) | Reverse Voltage | |------------------------------------------------------------------------------------| | Continuous Forward Current | | Peak Forward Current (2 us pulse width, 0.1% duty cycle) | | Storage Temperature Range | | Operating Temperature Range65° C to +125° C | | Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering | | iron] 260° C(1) | | Power Dissipation | | Notes: | - (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering. - (2) Derate linearly 2.0 mW/° C above 25° C. - (3) E<sub>e(APT)</sub> is a measurement of the average radiant intensity within the cone formed by the measurement surface, a radius of 1.429" (36.30 mm) measured from the lens side of the tab to the sensing surface and a sensing surface of 0.250" (6.35 mm) in diameter forming a 10° cone. E<sub>e(APT)</sub> is not necessarily uniform within the measured area. - (4) Measurement made with 100µs pulse measured at the trailing edge of the pulse with a duty cycle of 0.10% and an IF = 100 mA. ## **Typical Performance Curves** ## Forward Voltage and Radiant Incidence vs. Forward Current Carrollton, Texas 75006 ## Types OP231, OP232, OP233 **Electrical Characteristics** (T<sub>A</sub> = 25° C unless otherwise noted) | SYMBOL | PARAMETER | | | TYP | MAX | UNITS | TEST CONDITIONS | |---------------------|----------------------------------------------|-------------------------|-------------------|--------------------|-----|--------------------|-------------------------------------------------------------------------------------------------------------------------------| | E <sub>e(APT)</sub> | Apertured Radiant Incidence | OP231<br>OP232<br>OP233 | 1.5<br>2.0<br>3.0 | | 6.0 | mW/cm <sup>2</sup> | I <sub>F</sub> = 100 mA <sup>(3)(4)</sup> I <sub>F</sub> = 100 mA <sup>(3)(4)</sup> I <sub>F</sub> = 100 mA <sup>(3)(4)</sup> | | Po | Radiant Power Output | OP231<br>OP232<br>OP233 | | 6.0<br>8.0<br>10.0 | | mW | IF = 100 mA <sup>(3)(4)</sup> IF = 100 mA <sup>(3)(4)</sup> IF = 100 mA <sup>(3)(4)</sup> | | V <sub>F</sub> | Forward Voltage | | | | 2.0 | V | I <sub>F</sub> = 100 mA <sup>(4)</sup> | | I <sub>R</sub> | Reverse Current | | | | 100 | μА | V <sub>R</sub> = 2 V | | λр | Wavelength at Peak Emission | | | 890 | | nm | I <sub>F</sub> = 10 mA | | В | Spectral Bandwidth Between Half Power Points | | | 80 | | nm | I <sub>F</sub> = 10 mA | | Δλρ/ΔΤ | Spectral Shift with Temperature | | | +0.30 | | nm/° C | I <sub>F</sub> = Constant | | θнР | Emission Angle at Half Power Points | | | 18 | | Deg. | I <sub>F</sub> = 100 mA | | tr | Output Rise Time | | | 500 | | ns | I <sub>F(PK)</sub> = 100 mA, | | tf | Output Fall Time | | | 250 | | ns | PW = 10 μs, D.C. = 10% | ## **Typical Performance Curves**