

Plastic Point Source Infrared Emitting Diode Type OP268FPS

Features

- Point source irradiance pattern
- Flat lensed for wide radiation angle
- Easily stackable on 0.100" (2.54 mm) hole centers

Description

The OP268FPS contains an 850 nm gallium aluminum arsenide infrared emitting diode molded in an "end-looking" miniature black package. This device has a wide radiation angle due to its flat emitting surface. The point source GaAlAs IRED emits photons from a 0.004" diameter area centered with the optical centerline. Small size and 0.100" (2.54 mm) lead spacing allow considerable design flexibility.

The stable V_F vs. Temperature characteristic make them ideal for applications where voltage is limited (such as battery operation).

The low $t_{\text{r}}/t_{\text{f}}$ make them ideal for high speed operation.

Absolute Maximum Ratings (T_A = 25^o C unless otherwise noted)

Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)	1.0 A
Storage and Operating Temperature Range40°	C to +100 $^{\circ}$ C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. wi	
iron]	260° C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾

NOTES:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. Maximum 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33 mW/° C above 25° C.
- (3) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.081" (2.06 mm) in diameter, perpendicular to and centered on the mechanical axis of the "emitting surface" and 0.400" (10.16 mm) from the measurement surface. E_{e(APT)} is not necessarily uniform within the measured area.

Type OP268FPS

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Irradiance	.10		.90	mW/cm ²	I _F = 20 mA ⁽³⁾
V _F	Forward Voltage			1.80	V	I _F = 20 mA
IR	Reverse Current			20	μА	V _R = 2 V
λр	Wavelength at Peak Emission		850		nm	I _F = 20 mA
В	Spectral Bandwidth Between Half Power Points		50		nm	I _F = 20 mA
θнР	Emission Angle at Half Power		±50°		Deg.	I _F = 20 mA
t _r	Rise Time		10		ns	I _{F(PK)} = 20 mA
t _f	Fall Time		10		ns	PW = 10 μs, D.C. = 10%