Small Signal MOSFET

20 V, 915 mA, Single N-Channel with ESD Protection, SC-75 and SC-89

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- ESD Protected Gate
- Pb-Free Packages are Available

Applications

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Management
- Portables like Cell Phones, PDAs, Digital Cameras, Pagers, etc.

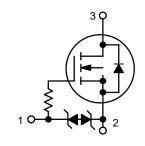
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

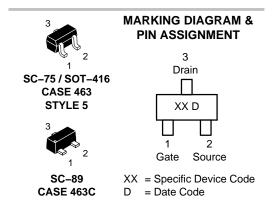
Parame	Symbol	Value	Units			
Drain-to-Source Voltage	V_{DSS}	20	V			
Gate-to-Source Voltage	V_{GS}	±6.0	V			
Continuous Drain			I _D	915	mA	
Current (Note 1)	State	T _A = 85°C		660		
Power Dissipation (Note 1)	Steady State		P _D	300	mW	
Pulsed Drain Current	t _p =	=10 μs	I _{DM}	1.3	Α	
Operating Junction and St	T _J , T _{STG}	–55 to 150	°C			
Continuous Source Curren	I _S	280	mA			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C	

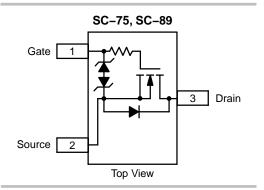
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$		°C/W
SC-75 / SOT-416		416	
SC-89		400	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).


ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
20 V	0.127 Ω @ 4.5 V	
	0.170 Ω @ 2.5 V	915 mA
	0.242 Ω @ 1.8 V	

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			•				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ 20		20	26		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				18.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, V_{D}$	_S = 16 V			100	nA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	_S = ±4.5 V			±1.0	μΑ
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	0.45	0.76		V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-2.15		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 600 \text{ mA}$			127	230	mΩ
		$V_{GS} = 2.5 \text{ V}, I_D = 500 \text{ mA}$			170	275	
	V _{GS} = 1.8 V, I _D =		= 350 mA		242	700	
Forward Transconductance	9 _{FS}	V _{DS} = 10 V, I _D = 400 mA			1.4		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 16 V			110		pF
Output Capacitance	C _{OSS}				16		
Reverse Transfer Capacitance	C _{RSS}				12		
Total Gate Charge	$Q_{G(TOT)}$				1.82		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 \text{ V, V}_{I}$	os = 10 V,		0.2		
Gate-to-Source Charge	Q_{GS}	$I_{D} = 0.2$	Ä		0.3		
Gate-to-Drain Charge	Q_{GD}				0.42		
SWITCHING CHARACTERISTICS (No	te 3)						
Turn-On Delay Time	t _{d(ON)}				3.7		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DD} = 10 \text{ V},$ $I_{D} = 0.2 \text{ A}, R_{G} = 10 \Omega$			4.4		
Turn-Off Delay Time	t _{d(OFF)}				25		
Fall Time	t _f				7.6		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.67	1.1	V
		$I_S = 200 \text{ mA}$	T _J = 125°C		0.54		

ORDERING INFORMATION

Device	Marking (XX)	Package	Shipping
NTA4153NT1	TN	SC-75 / SOT-416	3000/Tape & Reel
NTA4153NT1G	TN	SC-75 / SOT-416 (Pb-Free)	3000/Tape & Reel
NTE4153NT1G	ТМ	SC-89 (Pb-Free)	3000/Tape & Reel

^{2.} Pulse Test: pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$. 3. Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

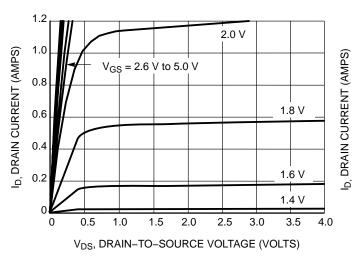


Figure 1. On-Region Characteristics

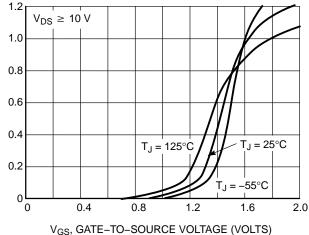


Figure 2. Transfer Characteristics

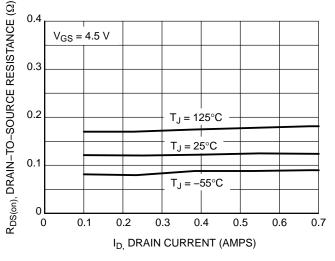


Figure 3. On–Resistance vs. Drain Current and Temperature

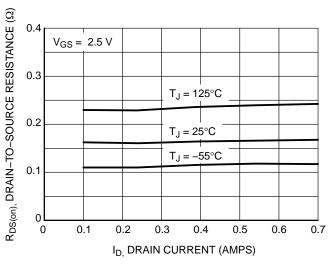


Figure 4. On–Resistance vs. Drain Current and Temperature

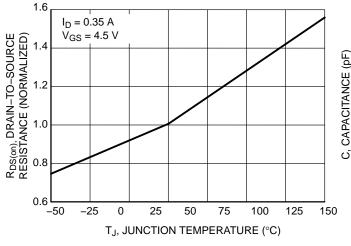


Figure 5. On–Resistance Variation with Temperature

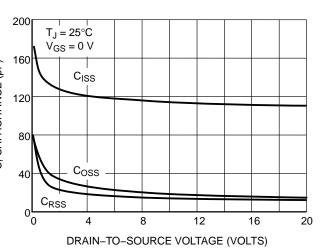
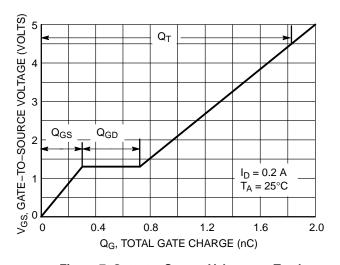



Figure 6. Capacitance Variation

TYPICAL ELECTRICAL CHARACTERISTICS

O.6 $V_{GS} = 0 V$ O.5 O

Figure 7. Gate-to-Source Voltage vs. Total Gate Charge

Figure 8. Diode Forward Voltage vs. Current

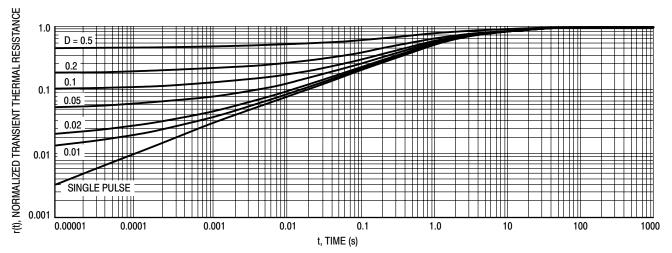
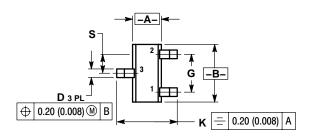
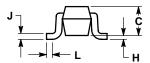
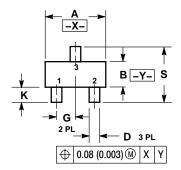
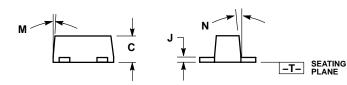




Figure 9. Normalized Thermal Response

PACKAGE DIMENSIONS

SC-75 / SOT-416 CASE 463-01 **ISSUE C**

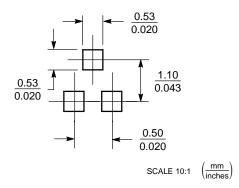



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	INCHES		
DIM	MIN	MIN MAX		MAX	
Α	0.70	0.90	0.028	0.035	
В	1.40	1.80	0.055	0.071	
C	0.60	0.90	0.024	0.035	
D	0.15	0.30	0.006	0.012	
G	1.00	BSC	0.039 BSC		
Н		0.10		0.004	
7	0.10	0.25	0.004	0.010	
K	1.45	1.75	0.057	0.069	
L	0.10	0.20	0.004	0.008	
S	0.50	BSC	0.020	BSC	

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

SC-89 CASE 463C-03 ISSUE C



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
С	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
Н	C).53 REF	-	0.021 REF			
J	0.10	0.15	0.20	0.004	0.006	0.008	
K	0.30	0.40	0.50	0.012	0.016	0.020	
L	1.10 REF			0.043 REF			
М			10 °			10 °	
N			10 °			10 °	
S	1.50	1.60	1.70	0.059	0.063	0.067	

RECOMMENDED SOLDERING FOOTPRINT FOR SC-75 AND SC-89*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.