Preferred Device Product Preview # **Dual Common Base-Collector Bias Resistor Transistors** # NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the NSTB1010XV5T5, two complementary BRT devices are housed in the SOT–553 package which is ideal for low power surface mount applications where board space is at a premium. - Simplifies Circuit Design - Reduces Board Space - Reduces Component Count - Available in 8 mm, 7 inch Tape and Reel - Pb-Free Package May be Available **MAXIMUM RATINGS** ($T_A = 25^{\circ}C$ unless otherwise noted, common for Q_1 and Q_2 , – minus sign for Q_1 (PNP) omitted) | Rating | Symbol | Value | Unit | |---------------------------|------------------|-------|------| | Collector-Base Voltage | V _{CBO} | 50 | Vdc | | Collector-Emitter Voltage | V_{CEO} | 50 | Vdc | | Collector Current | I _C | 100 | mAdc | #### THERMAL CHARACTERISTICS | Characteristic
(One Junction Heated) | Symbol | Max | Unit | |--|-----------------|------------------------------|-------------| | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D | 357 (Note 1)
2.9 (Note 1) | mW
mW/°C | | Thermal Resistance –
Junction-to-Ambient | $R_{\theta JA}$ | 350 (Note 1) | °C/W | | Characteristic
(Both Junctions Heated) | Symbol | Max | Unit | | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D | 500 (Note 1)
4.0 (Note 1) | mW
mW/°C | | Thermal Resistance –
Junction-to-Ambient | $R_{ heta JA}$ | 250 (Note 1) | °C/W | | | | | °C | #### 1. FR-4 @ Minimum Pad. This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice. #### ON Semiconductor® #### http://onsemi.com #### MARKING DIAGRAM US = Specific Device Code D = Date Code #### ORDERING INFORMATION | Device | Package | Shipping† | |---------------|---------|--------------------------------| | NSTB1010XV5T1 | SOT-553 | 4 mm pitch
4000/Tape & Reel | | NSTB1010XV5T5 | SOT-553 | 2 mm pitch
8000/Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **Preferred** devices are recommended choices for future use and best overall value. ## $\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}C \ unless \ otherwise \ noted)$ | Characteristic | Symbol | Min | Тур | Max | Unit | |---|--------------------------------|------|-----|-------|------| | OFF CHARACTERISTICS
Q1 TRANSISTOR: PNP | | | | | | | Collector-Base Cutoff Current ($V_{CB} = -50 \text{ V}, I_E = 0$) | Ісво | _ | - | -100 | nAdc | | Collector-Emitter Cutoff Current (V _{CB} = -50 V, I _B = 0) | I _{CEO} | - | - | -500 | nAdc | | Emitter-Base Cutoff Current (V _{EB} = -6.0 V, I _C = 0) | I _{EBO} | - | - | -1.5 | mAdc | | Collector-Base Breakdown Voltage ($I_C = -10 \mu A, I_E = 0$) | V _{(BR)CBO} | -50 | - | - | Vdc | | Collector-Emitter Breakdown Voltage (Note 2) (I _C = -2.0 mA, I _B = 0) | V _{(BR)CEO} | -50 | - | _ | Vdc | | ON CHARACTERISTICS (Note 2) | | | | | | | Collector-Emitter Saturation Voltage (I _C = −10 mA, I _B = −1.0 mA) | V _{CE(sat)} | _ | - | -0.25 | Vdc | | DC Current Gain ($V_{CE} = -10 \text{ V}, I_{C} = -5.0 \text{ mA}$) | h _{FE} | 15 | 27 | _ | _ | | Output Voltage (on) ($V_{CC} = -5.0 \text{ V}$, $V_B = -2.5 \text{ V}$, $R_L = 1.0 \text{ k}\Omega$) | V _{OL} | - | - | -0.2 | Vdc | | Output Voltage (off) ($V_{CC} = -5.0 \text{ V}$, $V_B = -0.5 \text{ V}$, $R_L = 1.0 \text{ k}\Omega$) | V _{OH} | -4.9 | - | _ | Vdc | | Input Resistor | R ₁ | 3.3 | 4.7 | 6.1 | kΩ | | Resistor Ratio | R ₁ /R ₂ | 0.8 | 1.0 | 1.2 | _ | | Q2 TRANSISTOR: NPN OFF CHARACTERISTICS | | | | | | | Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0) | I _{CBO} | _ | - | 100 | nAdc | | Collector-Emitter Cutoff Current (V _{CB} = 50 V, I _B = 0) | I _{CEO} | - | - | 500 | nAdc | | Emitter-Base Cutoff Current (V _{EB} = 6.0, I _C = 5.0 mA) | I _{EBO} | - | - | 0.5 | mAdc | | ON CHARACTERISTICS | | | | | | | Collector-Base Breakdown Voltage (I _C = 10 μA, I _E = 0) | V _{(BR)CBO} | 50 | _ | _ | Vdc | | Collector-Emitter Breakdown Voltage (I _C = 2.0 mA, I _B = 0) | V _{(BR)CEO} | 50 | _ | - | Vdc | | DC Current Gain (V _{CE} = 10 V, I _C = 5.0 mA) | h _{FE} | 35 | 60 | - | | | Collector–Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.3 mA) | V _{CE(SAT)} | - | - | 0.25 | Vdc | | Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω) | V _{OL} | - | - | 0.2 | Vdc | | Output Voltage (off) (V _{CC} = 5.0 V, V_B = 0.5 V, R_L = 1.0 k Ω) | V _{OH} | 4.9 | - | _ | Vdc | | Input Resistor | R1 | 7.0 | 10 | 13 | kΩ | | Resistor Ratio | R1/R2 | 0.8 | 1.0 | 1.2 | - | ^{2.} Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%. Figure 1. Derating Curve #### TYPICAL ELECTRICAL CHARACTERISTICS — PNP TRANSISTOR Figure 2. V_{CE(sat)} versus I_C Figure 3. DC Current Gain Figure 4. Output Capacitance Figure 5. Output Current versus Input Voltage Figure 6. Input Voltage versus Output Current #### TYPICAL ELECTRICAL CHARACTERISTICS — NPN TRANSISTOR Figure 7. V_{CE(sat)} versus I_C Figure 8. DC Current Gain Figure 9. Output Capacitance Figure 10. Output Current versus Input Voltage Figure 11. Input Voltage versus Output Current #### **PACKAGE DIMENSIONS** SOT-553 5-LEAD PACKAGE CASE 463B-01 **ISSUE A** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. | | MILLIN | ILLIMETERS INCHES | | | |-----|----------|-------------------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.50 | 1.70 | 0.059 | 0.067 | | В | 1.10 | 1.30 | 0.043 | 0.051 | | С | 0.50 | 0.60 | 0.020 | 0.024 | | D | 0.17 | 0.27 | 0.007 | 0.011 | | G | 0.50 BSC | | 0.020 | BSC | | _ | 0.08 | 0.18 | 0.003 | 0.007 | | K | 0.10 | 0.30 | 0.004 | 0.012 | | S | 1.50 | 1.70 | 0.059 | 0.067 | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 N. American Technical Support: 800-282-9855 Toll Free ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.