Power MOSFET # -20 V, -1.37 A, Single P-Channel, SC-70 #### **Features** - Leading –20 V Trench for Low R_{DS(on)} - -2.5 V Rated for Low Voltage Gate Drive - SC-70 Surface Mount for Small Footprint (2x2 mm) - Pb-Free Package is Available ## **Applications** - High Side Load Switch - Charging Circuit - Single Cell Battery Applications such as; Cell Phones, Digital Cameras, PDAs #### MAXIMUM RATINGS (T_J = 25°C unless otherwise stated) | Parameter | | | Symbol | Value | Units | |---|------------------|-----------------------|--------------------------------------|---------------|-------| | Drain-to-Source Voltage | | | V_{DSS} | -20 | V | | Gate-to-Source Voltage | | | V_{GS} | ±12 | V | | Continuous Drain
Current (Note 1) | | | I _D | -1.28 | Α | | Current (Note 1) | State | T _A = 70°C | | -1.00 | | | | t ≤ 5 s | T _A = 25°C | | -1.37 | Α | | Power Dissipation (Note 1) | Steady
State | T _A = 25°C | P _D | 0.29 | W | | | t ≤ 5 s | | | 0.33 | W | | Pulsed Drain Current | t _p = | = 10 μs | I _{DM} | -4.0 | Α | | Operating Junction and Storage Temperature | | | T _J ,
T _{STG} | –55 to
150 | °C | | Source Current (Body Diode), Continuous | | | I _S | -0.5 | Α | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | ### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Units | |---|-----------------|-----|-------| | Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ | 430 | °C/W | | Junction-to-Ambient - t ≤ 5 s (Note 1) | $R_{\theta JA}$ | 375 | | - 1. Surface–mounted on FR4 board using 1" sq. pad size (Cu area = 1.127 in sq [1 oz] including traces). - Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = TBD in sq). # ON Semiconductor® #### http://onsemi.com | V _{(BR)DSS} | R _{DS(on)} TYP | I _D Max | |----------------------|--------------------------|--------------------| | | 83 m Ω @ -4.5 V | | | -20 V | 88 m Ω @ -3.6 V | –1.37 A | | | 104 mΩ @ –2.5 V | | #### P-Channel MOSFET # MARKING DIAGRAM & PIN ASSIGNMENT SC-70/SOT-323 CASE 419 STYLE 8 TT = Device Code W = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|----------------------|-----------------------| | NTS4101PT1 | SOT-323 | 3000/Tape & Reel | | NTS4101PT1G | SOT-323
(Pb-Free) | 3000/Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** (T₁=25°C unless otherwise stated) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--------------------------------------|---|-------------------------|-------|-------|------|-------| | OFF CHARACTERISTICS | | | • | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -20 | -24.5 | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | | | | -13.7 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V, | T _J = 25°C | | | -1.0 | μΑ | | | | $V_{DS} = -20 \text{ V}$ | T _J = 70°C | | | -5.0 | | | Gate-to-Source Leakage Current | I_{GSS} | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$ | | | | ±100 | nA | | ON CHARACTERISTICS (Note 3) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D =$ | = –250 μA | -0.45 | -0.64 | | V | | Negative Threshold Temperature
Coefficient | V _{GS(TH)} /T _J | | | | 2.7 | | mV/°C | | Drain-to-Source On Resistance | R _{DS(on)} | $V_{GS} = -4.5 \text{ V}, \text{ I}$ | _D = -1.0 A | | 83 | 120 | mΩ | | | | $V_{GS} = -3.6 \text{ V}, \text{ I}$ | _D = -0.7 A | | 88 | 130 | | | | | $V_{GS} = -2.5 \text{ V}, I_D = -0.3 \text{ A}$ | | | 104 | 160 | 7 | | CHARGES AND CAPACITANCES | • | | | | • | | | | Input Capacitance | C _{ISS} | $V_{GS} = 0 \text{ V, f} = 0$ | 1.0 MHz, | | 603 | | pF | | Output Capacitance | C _{OSS} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = -20 \text{ V}$ | | | 90 | | 1 | | Reverse Transfer Capacitance | C _{RSS} | | | | 62 | | | | Total Gate Charge | $Q_{G(TOT)}$ | $V_{GS} = -4.5 \text{ V}, V_{DS} = -4.5 \text{ V},$ $I_{D} = -1.0 \text{ A}$ | | | 6.4 | | nC | | Threshold Gate Charge | $Q_{G(TH)}$ | | | | 0.7 | | | | Gate-to-Source Charge | Q_{GS} | | | | 1.0 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 1.5 | | | | SWITCHING CHARACTERISTICS (No | ote 4) | | | | | | - | | Turn-On Delay Time | t _{d(ON)} | $V_{GS} = -4.5 \text{ V}, V_{D}$
$I_{D} = -1.0 \text{ A}, R_{O}$ | $D_D = -4.0 \text{ V},$ | | 6.2 | | ns | | Rise Time | t _r | $I_D = -1.0 \text{ A}, R_0$ | $G = 0.2 \Omega$ | | 14.9 | | | | Turn-Off Delay Time | t _{d(OFF)} | | | | 26 | | | | Fall Time | t _f | | | | 18 | | | | DRAIN-SOURCE DIODE CHARACTE | RISTICS | | | | | | - | | Forward Diode Voltage | V _{SD} | $V_{GS} = 0 V$ | T _J = 25°C | | -0.61 | -1.2 | V | | | | $I_{S} = -0.3 \text{ A}$ | T _J = 125°C | | -0.5 | | | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A/}\mu\text{s,}$ $I_{S} = -1.0 \text{ A}$ | | | 10.9 | | ns | | Charge Time | Ta | | | | 7.1 | | 1 | | Discharge Time | T _b | | | | 3.8 | | 1 | | Reverse Recovery Charge | Q_{RR} | | | | 4.25 | | nC | Pulse Test: pulse width ≤ 300μs, duty cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance versus Drain Current and Temperature Figure 4. On–Resistance versus Drain Current and Temperature Figure 5. On–Resistance Variation with Temperature Figure 6. Capacitance Variation # **TYPICAL CHARACTERISTICS** Figure 7. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 8. Diode Forward Voltage versus Current # **PACKAGE DIMENSIONS** **SC-70 (SOT-323)** CASE 419-04 ISSUE L - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIMETERS | | | |-----|-----------|-------|-------------|------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | | В | 0.045 | 0.053 | 1.15 | 1.35 | | | С | 0.032 | 0.040 | 0.80 | 1.00 | | | D | 0.012 | 0.016 | 0.30 | 0.40 | | | G | 0.047 | 0.055 | 1.20 | 1.40 | | | Н | 0.000 | 0.004 | 0.00 | 0.10 | | | J | 0.004 | 0.010 | 0.10 | 0.25 | | | K | 0.017 REF | | 0.425 | REF | | | L | 0.026 BSC | | 0.650 | BSC | | | N | 0.028 REF | | 0.700 | REF | | | S | 0.079 | 0.095 | 2.00 | 2.40 | | STYLE 8: PIN 1. GATE 2. SOURCE 3. DRAIN ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.