

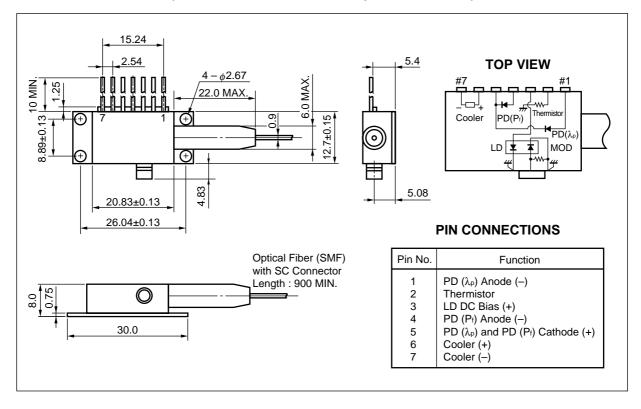
# LASER DIODE

# **NX8560SJ Series**

# EA MODULATOR AND WAVELENGTH MONITOR INTEGRATED 1 550 nm MQW-DFB LASER DIODE MODULE FOR 10 Gb/s APPLICATIONS

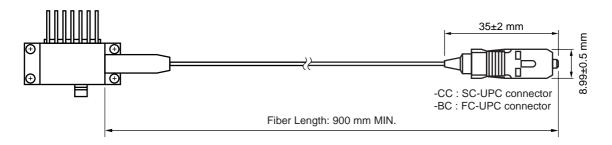
#### **DESCRIPTION**

The NX8560SJ Series is an Electro-Absorption (EA) modulator and wavelength monitor integrated, 1 550 nm Multiple Quantum Well (MQW) structured Distributed Feed-Back (DFB) laser diode module. It is capable of transmitting up to 40 km standard single mode fiber (dispersion: 800 ps/nm) for 10 Gb/s applications with built in wavelength monitor.


#### **FEATURES**

- · Integrated electroabsorption modulator
- Wavelength monitor function (Etalon filter, Wavelength monitor PD)
- 10 Gb/s transmission up to 40 km SSMF (dispersion: 800 ps/nm)
- 7-pin butterfly package with GPO<sup>™</sup> connector
- Available for DWDM wavelengths based on ITU-T recommendations (50 GHz grid, refer to ORDERING INFORMATION)




The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

#### PACKAGE DIMENSIONS (UNIT: mm, unless otherwise specified ±0.2 mm)



# **OPTICAL FIBER CHARACTERISTICS**

| Parameter                     | Specification | Unit    |
|-------------------------------|---------------|---------|
| Mode Field Diameter           | 9.3±0.5       | $\mu$ m |
| Cladding Diameter             | 125±1         | μm      |
| Tight Buffer Diameter         | 900±100       | μm      |
| Cut-off Wavelength            | < 1 270       | nm      |
| Attenuation 1 525 to 1 575 nm | < 0.3         | dB/km   |
| Minimum Fiber Bending Radius  | 30            | mm      |
| Fiber Length                  | 900 MIN.      | mm      |
| Flammability                  | UL1581 VW-1   |         |



#### **ORDERING INFORMATION**

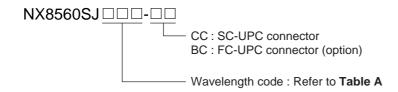



Table A: DWDM wavelengths based on ITU-T recommendations (@ TLD = Tset)

| Wavelength Code | ITU-T Wavelength (nm) | Frequency<br>(THz) | Wavelength Code | ITU-T Wavelength<br>(nm) | Frequency<br>(THz) |
|-----------------|-----------------------|--------------------|-----------------|--------------------------|--------------------|
| 287             | 1528.773              | 196.10             | 397             | 1539.766                 | 194.70             |
| 291             | 1529.163              | 196.05             | 401             | 1540.162                 | 194.65             |
| 295             | 1529.553              | 196.00             | 405             | 1540.557                 | 194.60             |
| 299             | 1529.944              | 195.95             | 409             | 1540.953                 | 194.55             |
| 303             | 1530.334              | 195.90             | 413             | 1541.349                 | 194.50             |
| 307             | 1530.725              | 195.85             | 417             | 1541.746                 | 194.45             |
| 311             | 1531.116              | 195.80             | 421             | 1542.142                 | 194.40             |
| 315             | 1531.507              | 195.75             | 425             | 1542.539                 | 194.35             |
| 318             | 1531.898              | 195.70             | 429             | 1542.936                 | 194.30             |
| 322             | 1532.290              | 195.65             | 433             | 1543.333                 | 194.25             |
| 326             | 1532.681              | 195.60             | 437             | 1543.730                 | 194.20             |
| 330             | 1533.073              | 195.55             | 441             | 1544.128                 | 194.15             |
| 334             | 1533.465              | 195.50             | 445             | 1544.526                 | 194.10             |
| 338             | 1533.858              | 195.45             | 449             | 1544.924                 | 194.05             |
| 342             | 1534.250              | 195.40             | 453             | 1545.322                 | 194.00             |
| 346             | 1534.643              | 195.35             | 457             | 1545.720                 | 193.95             |
| 350             | 1535.036              | 195.30             | 461             | 1546.119                 | 193.90             |
| 354             | 1535.429              | 195.25             | 465             | 1546.518                 | 193.85             |
| 358             | 1535.822              | 195.20             | 469             | 1546.917                 | 193.80             |
| 362             | 1536.216              | 195.15             | 473             | 1547.316                 | 193.75             |
| 366             | 1536.609              | 195.10             | 477             | 1547.715                 | 193.70             |
| 370             | 1537.003              | 195.05             | 481             | 1548.115                 | 193.65             |
| 373             | 1537.397              | 195.00             | 485             | 1548.515                 | 193.60             |
| 377             | 1537.792              | 194.95             | 489             | 1548.915                 | 193.55             |
| 381             | 1538.186              | 194.90             | 493             | 1549.315                 | 193.50             |
| 385             | 1538.581              | 194.85             | 497             | 1549.715                 | 193.45             |
| 389             | 1538.976              | 194.80             | 501             | 1550.116                 | 193.40             |
| 393             | 1539.371              | 194.75             | 505             | 1550.517                 | 193.35             |

Remark  $\lambda$  monitor slope: Channel frequency for 191.80 THz + 2n × 0.05 THz is assigned on negative slope. Channel frequency for 191.80 THz + (2n + 1) × 0.05 THz is assigned on positive slope. n is a positive integer including zero.

| Wavelength Code | ITU-T Wavelength (nm) | Frequency<br>(THz) |
|-----------------|-----------------------|--------------------|
| 509             | 1550.918              | 193.30             |
| 513             | 1551.319              | 193.25             |
| 517             | 1551.721              | 193.20             |
| 521             | 1552.122              | 193.15             |
| 525             | 1552.524              | 193.10             |
| 529             | 1552.926              | 193.05             |
| 533             | 1553.329              | 193.00             |
| 537             | 1553.731              | 192.95             |
| 541             | 1554.134              | 192.90             |
| 545             | 1554.537              | 192.85             |
| 549             | 1554.940              | 192.80             |
| 553             | 1555.343              | 192.75             |
| 557             | 1555.747              | 192.70             |
| 561             | 1556.151              | 192.65             |
| 565             | 1556.555              | 192.60             |
| 569             | 1556.959              | 192.55             |
| 573             | 1557.363              | 192.50             |
| 577             | 1557.768              | 192.45             |
| 581             | 1558.173              | 192.40             |
| 585             | 1558.578              | 192.35             |
| 589             | 1558.983              | 192.30             |
| 593             | 1559.389              | 192.25             |
| 597             | 1559.794              | 192.20             |
| 602             | 1560.200              | 192.15             |
| 606             | 1560.606              | 192.10             |
| 610             | 1561.013              | 192.05             |
| 614             | 1561.419              | 192.00             |
| 618             | 1561.826              | 191.95             |
| 622             | 1562.233              | 191.90             |
| 626             | 1562.640              | 191.85             |
| 630             | 1563.047              | 191.80             |

Remark  $\lambda$  monitor slope: Channel frequency for 191.80 THz +  $2n \times 0.05$  THz is assigned on negative slope. Channel frequency for 191.80 THz +  $(2n + 1) \times 0.05$  THz is assigned on positive slope. n is a positive integer including zero.

# **ABSOLUTE MAXIMUM RATINGS**

| Parameter                       | Symbol           | Ratings      | Unit |
|---------------------------------|------------------|--------------|------|
| Optical Output Power from Fiber | Pf               | 10           | mW   |
| Forward Current of LD           | IFLD             | 150          | mA   |
| Reverse Voltage of LD           | VRLD             | 2.0          | V    |
| Forward Voltage of Modulator    | VFEA             | 1            | V    |
| Reverse Voltage of Modulator    | VREA             | 4            | V    |
| Forward Current of PD           | <b>I</b> FPD     | 1            | mA   |
| Reverse Voltage of PD           | VRPD             | 10           | V    |
| Cooler Current                  | lc               | 1.5          | Α    |
| Cooler Voltage                  | Vc               | 2.5          | V    |
| Operating Case Temperature      | Tc               | −5 to +70    | °C   |
| Storage Temperature             | T <sub>stg</sub> | -40 to +85   | °C   |
| Lead Soldering Temperature      | Tsld             | 350 (3 sec.) | °C   |

#### **ELECTRO-OPTICAL CHARACTERISTICS**

(TLD = Tset, Tc = -5 to +70°C, BOL, unless otherwise specified)

| Parameter                       | Symbol           | Conditions                                                                           | MIN.  | TYP.                | MAX.  | Unit |
|---------------------------------|------------------|--------------------------------------------------------------------------------------|-------|---------------------|-------|------|
| Laser Set Temperature           | Tset             | *1                                                                                   | 20    |                     | 35    | °C   |
| Operating Current               | lop              |                                                                                      | 50    | 60                  | 80    | mA   |
| Modulation Center Voltage       | Vcenter          |                                                                                      | -2.0  |                     | -0.5  | V    |
| Modulation Voltage              | V <sub>mod</sub> |                                                                                      |       | 2                   | 3     | V    |
| Forward Voltage of LD           | V <sub>FLD</sub> | IFLD = I <sub>OP</sub>                                                               |       |                     | 2.0   | V    |
| Threshold Current               | Ith              |                                                                                      |       | 7                   | 20    | mA   |
| Optical Output Power from Fiber | Pf               | Under modulation <sup>2</sup>                                                        | -3    | -2                  |       | dBm  |
| Peak Emission Wavelength        | λρ               | IFLD = Iop, VEA = 0 V, TLD = Tset                                                    | 1 528 | ITU-T <sup>*3</sup> | 1 564 | nm   |
| Side Mode Suppression Ratio     | SMSR             | IFLD = Iop, VEA = 0 V                                                                | 30    | > 37                |       | dB   |
| Extinction Ratio                | ER               | Under modulation 2                                                                   | 10    | 11                  |       | dB   |
| Rise Time                       | tr               | 20-80%, Under modulation 2                                                           |       |                     | 40    | ps   |
| Fall Time                       | tf               | 80-20%, Under modulation 2                                                           |       |                     | 40    | ps   |
| Dispersion Penalty              | DP               | 800 ps/nm under modulation*2,4                                                       |       |                     | 2.0   | dB   |
| Optical Isolation               | ls               |                                                                                      | 23    |                     |       | dB   |
| Input Return Loss               | S <sub>11</sub>  | I <sub>FLD</sub> = I <sub>op</sub> , V <sub>EA</sub> = -1 V,<br>f = 130 MHz to 5 GHz |       | -10                 | -8    | dB   |
|                                 |                  | $I_{FLD} = I_{op}, V_{EA} = -1 \text{ V},$ f = 5 to 10 GHz                           |       | -8                  | -5    |      |

\*1 Tset is set at a certain point between 20 and 35°C for ITU-T grid wavelength

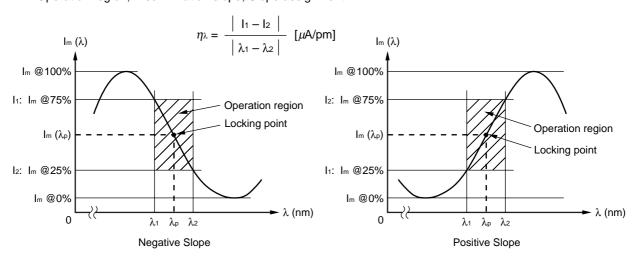
\*2 40 km SMF under modulation, 9.95328 Gb/s, PRBS  $2^{23}$ –1, VEA = Vcenter  $\pm$  1/2Vmod, IFLD = Iop, NEC Test System

 $V_{\text{center}}\ \ :$  a certain point between –2.0 and –0.5 V

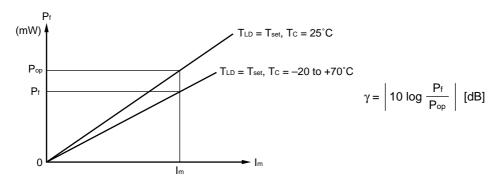
V<sub>mod</sub> : a certain point 3 V or below

lop : a certain point between 50 and 80 mA

\*3 Available for DWDM wavelengths based on ITU-T recommendations (50 GHz grid).


Please refer to **ORDERING INFORMATION**.

\*4 BER =  $10^{-10}$ 


# ELECTRO-OPTICAL CHARACTERISTICS (Applicable to Monitor PD: TLD = Tset, Tc = -5 to +70°C, BOL)

| Parameter                                | Symbol               | Conditions                            | MIN. | TYP. | MAX. | Unit  |
|------------------------------------------|----------------------|---------------------------------------|------|------|------|-------|
| Monitor Current (Pf Monitor)             | Im (Pf)              | VRPD = 5 V, IFLD = lop                | 10   |      | 200  | μΑ    |
| Monitor Current (λ <sub>P</sub> Monitor) | Im (λ <sub>P</sub> ) | VRPD = 5 V, IFLD = Iop, Locking point | 5    |      | 100  | μΑ    |
| Operation Region <sup>*1</sup>           | Im (λ)               |                                       | 25   |      | 75   | %     |
|                                          | λ1-λ2                |                                       | 90   |      |      | pm    |
| Discrimination Slope 1                   | $\eta_{\lambda}$     | VRPD = 5 V, IFLD = Iop, Locking point | 0.24 |      |      | μA/pm |
| Dark Current                             | ΙD                   | VRPD = 5 V, VEA = 0 V                 |      |      | 10   | nA    |
| Terminal Capacitance                     | Ct                   | VRPD = 5 V, f = 1 MHz                 |      |      | 15   | pF    |
| Tracking Error                           | γ*2                  | Im (Pf) = const.                      |      |      | 0.5  | dB    |

#### \*1 Operation region, Discrimination slope, Slope assignment



#### \*2 Tracking Error: γ



# ELECTRO-OPTICAL CHARACTERISTICS (Applicable to Thermistor and TEC: Tc = -5 to +70°C)

| Parameter             | Symbol | Conditions             | MIN.  | TYP.  | MAX.  | Unit |
|-----------------------|--------|------------------------|-------|-------|-------|------|
| Thermistor Resistance | R      | T <sub>LD</sub> = 25°C | 9.5   | 10.0  | 10.5  | kΩ   |
| B Constant            | В      |                        | 3 350 | 3 450 | 3 550 | K    |
| Cooler Current        | lc     | $T_{LD} = T_{set}$     |       |       | 1.2   | Α    |
| Cooler Voltage        | Vc     | $T_{LD} = T_{set}$     |       |       | 2.4   | V    |

#### EA MODULATOR INTEGRATED DFB-LD FAMILY

|                  |            | Maximum<br>ings          |              | -Optical<br>teristics  |                                                       |                 |
|------------------|------------|--------------------------|--------------|------------------------|-------------------------------------------------------|-----------------|
| Part Number      | Tc<br>(°C) | T <sub>stg</sub><br>(°C) | Pf*1<br>(mW) | λ <sub>P</sub><br>(nm) | Application                                           | Package         |
|                  |            |                          | MIN.         | TYP.                   |                                                       |                 |
| NX8560LJ Series  | -20 to +70 | -40 to +85               | −3 dBm       | 1 550 <sup>*2</sup>    | 10 Gb/s: STM-64                                       | BFY with GPO    |
|                  |            |                          | −1 dBm       | 1 550                  |                                                       |                 |
| NX8560MC Series  | 0 to +75   | -40 to +85               | −1 dBm       | 1 550                  | 10 Gb/s: STM-64                                       | 19-pin mini BFY |
| NX8560MCS Series | 0 to +75   | -40 to +85               | −5 dBm       | 1 550                  | 10 Gb/s: STM-64                                       | 19-pin mini BFY |
| NX8560SJ Series  | -5 to +70  | -40 to +85               | −3 dBm       | 1 550 <sup>*2</sup>    | 10 Gb/s: STM-64 with λ monitoring PD                  | BFY with GPO    |
| NX8564LE Series  | -20 to +70 | -40 to +85               | −5 dBm       | 1 550°2                | 2.5 Gb/s: STM-16, 360 km                              | BFY             |
| NX8565LE Series  | -20 to +70 | -40 to +85               | −5 dBm       | 1 550 <sup>*2</sup>    | 2.5 Gb/s: STM-16, 600 km                              | BFY             |
| NX8566LE Series  | -20 to +70 | -40 to +85               | 0 dBm        | 1 550*²                | 2.5 Gb/s: STM-16, 240 km                              | BFY             |
| NX8567SA Series  | -5 to +70  | -40 to +85               | –5 dBm       | 1 550 <sup>*2</sup>    | 2.5 Gb/s: STM-16, 600 km with $\lambda$ monitoring PD | BFY             |
| NX8567SAM Series | -5 to +70  | -40 to +85               | –5 dBm       | 1 550 <sup>*2</sup>    | 2.5 Gb/s: STM-16, 360 km with $\lambda$ monitoring PD | BFY             |
| NX8567SAS Series | -5 to +70  | -40 to +85               | 0 dBm        | 1 550°²                | 2.5 Gb/s: STM-16, 240 km with $\lambda$ monitoring PD | BFY             |

<sup>\*1</sup> Under modulation

<sup>\*2</sup> Available for DWDM Wavelengths based on ITU-T recommendations

#### **REFERENCE**

| Document Name                                                               | Document No. |
|-----------------------------------------------------------------------------|--------------|
| OPTICAL SEMICONDUCTOR DEVICES FOR FIBEROPTIC COMMUNICATIONS SELECTION GUIDE | PX10161E     |
| Opto-Electronics Devices Pamphlet                                           | PX10160E     |

PATENT
 USP 4,826,295
 CA 1,286,848
 EP 143 000

- GPO is a trademark of Gilbert Engineering Co., Inc.
- The information in this document is current as of May, 2003. The information is subject to change
  without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
  books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
  and/or types are available in every country. Please check with an NEC sales representative for
  availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
  third parties by or arising from the use of NEC semiconductor products listed in this document or any other
  liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
  patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
  - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110



#### SAFETY INFORMATION ON THIS PRODUCT



#### 

| Warning Laser Beam    | A laser beam is emitted from this diode during operation.  The laser beam, visible or invisible, directly or indirectly, may cause injury to the eye or loss of eyesight.                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Do not look directly into the laser beam.                                                                                                                                                    |
|                       | Avoid exposure to the laser beam, any reflected or collimated beam.                                                                                                                          |
| Caution GaAs Products | This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.                               |
|                       | • Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.                          |
|                       | Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.                        |
|                       | Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal. |
|                       | Do not burn, destroy, cut, crush, or chemically dissolve the product.                                                                                                                        |
|                       | Do not lick the product or in any way allow it to enter the mouth.                                                                                                                           |
| Caution Optical Fiber | A glass-fiber is attached on the product. Handle with care.                                                                                                                                  |
| Optical Fiber         | When the fiber is broken or damaged, handle carefully to avoid injury from the damaged part or fragments.                                                                                    |

#### ▶For further information, please contact

#### **NEC Compound Semiconductor Devices, Ltd.**

5th Sales Group, Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579 E-mail: salesinfo@csd-nec.com

# NEC Compound Semiconductor Devices Hong Kong Limited

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309 E-mail: ncsd-hk@elhk.nec.com.hk

Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859 Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-01 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279