12-CHARACTER 2-LINE DOT MATRIX LCD CONTROLLER DRIVER # ■ GENERAL DESCRIPTION The NJU6428/29 is a Dot Matrix LCD controller driver for 12-character 2-line with icon display in single chip. It contains voltage tripler, bleeder resistance, CR oscillator, microprocessor interface circuits, instruction decoder controller, character generator ROM/RAM, high voltage operation common and segment drivers. The voltage tripler and bleeder resistance generates about triple voltage(8V) and bias voltage for LCD driving waveform internally from single power supply (3V). Consequently, high-contrast display can be performed though the simple power supply circuits. The CR oscillator incorporates C and R, therefore no external components for oscillation are required. The microprocessor interface circuits which operate by 1MHz, can be connected directly to 4/8bit microprocessor. The character generator consists of 9,600 bits ROM and 32 x 5 bits RAM. The 17-common (16 for character, 1 for icon) and 60-segment drivers are operated up to 13.5V, and the icon common driver display up to 60 icons. #### ■ PACKAGE OUTLINE NJU6428X/29XFC1 NJU6428X/29XFG1 #### **FEATURES** - 12-character 2-line Dot Matrix LCD Controller Driver - Maximum 60 icon Display (Using COMMK) - 4/8 Bit Microprocessor Direct Interface - Display Data RAM 24 x 8 bits : Maximum 12-character 2-line Display or 24-character 1-line Display - Character Generator ROM 9,600 bits : 240 Characters for 5 x 7 Dots - Character Generator RAM 32 x 5 bits : 4 Patterns (5 x 7 Dots) - High Voltage LCD Driver: 17-common / 60-segment - Maximum Display Character Number (1/18 Duty, Icon Display Only for Version D and N is 2/18 Duty) : OP-AMP. Drive ability Position of COMMK Duty of COMMK Device Display Character 1/18 NJU6428CX ±5µA 2/18 NJU6428DX Upper Side 1/18 NJU6428LX ±10 uA 2/18 NJU6428MX 12-Character 2-Line 1/18 + Max.60 Icon Disp. NJU6429CX **±5μA** 2/18 NJU6429DX Lower Side 1/18 NJU6429LX ±10 4A 2/18 NJU6429MX - Useful Instruction Set : Clear Display, Return Home, Display ON/OFF Cont, Cursor ON/OFF Cont, Display Blink, Cursor Shift, Character Shift - Power On Initialize / Hardware Reset Function - Voltage Tripler and Bleeder Resistance On-chip - Oscillation Circuit On-chip - Low Power Consumption -- (100 µA) - Operating Voltage --- 2.4 to 3.6 V (Except LCD Driving Voltage) - Package Outline --- Chip / Bumped Chip / QFP100-C1 / QFP100-G1(TQFP) - C-MOS Technology # ■ PIN CONFIGURATION (NJU6428FC1) # PIN CONFIGURATION (NJU6429FC1) # ■ PIN CONFIGURATION (NJU6428FG1) #### ■ PIN CONFIGURATION (NJU6429FG1) # PAD LOCATION CHIP SIZE : 5.83mm x 4.23mm CHIP CENTER : X=0 μm, Y=0 μm PAD SIZE : 80 μm x 80 μm X=(μm) Y=(μm) CHIP SIZE 5.83mm x 4.23mm (CHIP CENTER X=0 \(mm\), Y=0 \(mm\) PAD NAME PAD No PAD No 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 OSC₂ OSC: V₅ Vss C2 $C2^+$ C1 C1⁺ Ve i **V**DD RS Ε R/W DBo DB₁ DB_2 DB₃ DB RESET **V**50UT OSC₂ OSC₁ V5 Vss C2⁻ C2+ C1 C11 Vci VDD RS Ε R/W DBo DB₁ DB_2 DВз DB₄ RESET V_{50UT} #### PAD COORDINATES PAD NAME X=(μm) 2688.0 -1806.0 -1497.0 -1220.0 -1080.0 - 801.0 - 661.0 -382.0 - 242.0 38.0 178.0 378.0 578.0 718.0 858.0 998.0 1138.0 1278.0 1418.0 1558.0 1698.0 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 SEG20 SEG₂₁ SEG22 SEG₂₃ SEG₂₄ SEG₂₅ SEG₂₆ SEG₂₇ SEG₂₈ SEG₂₉ SEG₃₀ SEG₃₁ SEG₃₂ SEG33 SEG34 SEG35 SEG36 SEG₃₇ SEG38 SEG₃₉ SEG19 SEG20 SEG₂₁ SEG22 SEG₂₃ SEG₂₄ SEG₂₅ SEG₂₆ SEG₂₇ SEG28 SEG29 SEG₃₀ SEG₃₁ SEG₃₂ SEG33 SEG34 SEG35 SEG36 SEG₃₇ SEG38 -2688.0 1561.0 1281.0 1031.0 831.0 631.0 491.0 351.0 211.0 71.0 - 69.0 - 209.0 -349.0 -489.0 -629.0 -769.0 -909.0 -1049.0 -1249.0 -1449.0 -1649.0 Y=(11m) NJU6429 NJU6428 NJU6429 -2199.0SEG₄₀ SEG₃₉ -1894.051 DB₅ 2134.0 1896.0 DBs 2 -1999.0SEG₄₁ SEG₄₀ -1894.052 DB^e DB_6 1944.0 1896.0 -1894.0 3 -1799.0SEG₄₂ SEG41 53 DB₇ DB₇ 1784.0 1896.0 4 SEG₄₃ SEG₄₂ -1599.0-1894.054 COM₉ COMa 1547.0 1896.0 5 SEG44 SEG₄₃ -1419.0-1894.055 COMin COMio 1367.0 1896.0 -1279.0 6 SEG₄₅ SE<u>G44</u> -1894.0COM_{1 1} 1187.0 56 COM_{1 1} 1896.0 7 SEG₄₆ SEG₄₅ -1139.0-1894.057 COM₁₂ COM₁₂ 1027.0 1896.0 8 SEG₄₇ SEG₄₆ -1894.0COM₁₃ COM₁₃ - 999.0 58 887.0 1896.0 9 COM₁₄ SEG₄₈ SEG47 - 859.0 -1894.059 COM₁₄ 747.0 1896.0 10 SEG₄₉ SEG₄₈ -719.0-1894.060 COM₁₅ COM₁₅ 607.0 1896.0 11 SEG₄₉ - 579.0 -1894.0 467.0 SEG₅₀ 61 COM₁₆ COM₁₆ 1896.0 12 SEG50 -439.0SEGi SEG₅₁ -1894.062 COMMK 228.0 1896.0 13 SEG52 SEG₅₁ -299.0-1894.063 SEG₂ SEG₁ 1896.0 3.0 14 - 159.0 SEG52 -1894.064 SEG₃ -163.01896.0 SEG₅₃ SEG₂ 15 SEG₅₄ SEG₅₃ - 19.0 -1894.065 SEG₄ SEG₃ -303.01896.0 16 SEG55 SEG54 121.0 -1894.066 SEGs SEG₄ -443.01896.0 17 SEG₅₆ -1894.0 SEG55 261.0 67 SEG₆ SEGs - 583.0 1896.0 SEG₅₇ 401.0 18 -1894.0- 723.0 SEG₅₆ 68 SEG₇ SEGe 1896.0 19 SEG₅₈ SEG₅₇ 541.0 -1894.069 SEG₈ SEG₇ -863.01896.0 -1003.0 20 SEG₅₉ SEG₅₈ 681.0 -1894.070 SEG₉ SEG₈ 1896.0 21 SEGGO SEG59 821.0 -1894.071 SEG10 SEG₉ -1143.01896.0 22 -1894.072 SEG10 COMe SEG60 1058.0 SEG₁1 -1283.01896.0 23 COM₇ COM₈ 1339.0 -1894.073 SEG₁₂ SEG₁₁ -1423.01896.0 -1894.0 24 COMe COM₇ 1479.0 74 SEG₁₃ SEG12 -1563.01896.0 25 COM₅ COMe 1619.0 -1894.0 75 SEG₁₄ SEG₁₃ -1703.0 1896.0 COM₄ 26 COMs 1759.0 -1894.076 SEG₁₅ SEG₁₄ -1863.0 1896.0 27 COM₃ COM₄ -1894.077 SEG15 -2023.0 1919.0 SEG₁₆ 1896.0 28 SEG16 COM₂ COMa 2079.0 -1894.078 SEG₁₇ -2183.01896.0 29 COM COM2 2239.0 -1894.079 SEG₁₈ SEG₁₇ -2343.0 1896.0 30 COMMK COM₁ 2399.0 -1894.080 SEG19 SEG18 -2503.01896.0 The left side PAD of No1 PAD is Dummy PAD (Coordinates X=-2499,Y=-1894), No need Bonding. #### **BLOCK DIAGRAM** # TERMINAL DESCRIPTION | ILIMIINAL DE | | | | |------------------|------------------|--|---| | NJU64 | 28 | | | | PAD N | 0. | SYMBOL | F U N C T I O N | | FC1 | FG1. | | | | 41 | 39 | V _{DD} | Power Source (+ 3V) | | 34 | 32 | Vss | Power Source (0V) | | 33 | 31 | Vs | LCD Driving Voltage Output | | 32
31 | 30
29 | 0SC ₁
0SC ₂ | Oscillation Frequency Adjust Terminals. Normally Open.
(Oscillation C and R are incorporated, Osc Frequency=80kHz)
For external clock operation, the clock should be input on OSC1. | | 43 | 41 | RS | Register selection signal input(Pull-up resistance On-chip) "0": Instruction Register (Writing) Busy Flag, Address Counter (Reading) "1": Data Register (Writing/Reading) | | 44 | 42 | R/W | Read/Write selection signal input(Pull-up Resistance On-chip)
"O": Write , "1": Read | | 45 | 43 | E | Read/Write activation signal input | | 50~53 | 48~51 | DB₄~DB7 | 3-state Data Bus(Upper) to transfer the data between MPU and NJU6428/29.
DB7 is also used for the Busy Flag reading. | | 46~49 | 44~47 | DB₀~DB₃ | 3-state Data Bus(Lower) to transfer the data between MPU and NJU6428/29.
These bus are not used in the 4-bit operation. | | 29~22
54~61 | 27~20
52~59 | COM ₁ ~COM ₁₆ | LCD Common Driving Signal | | 30 | 28 | COMMK | Icon Common Driving Signal | | 62~100
1 ~ 21 | 60~100
1 ~ 19 | SEG 1~SEG60 | LCD Segment Driving Signal | | 39,37
38,36 | 37,35
36,34 | C ₁ ⁺ , C ₂ ⁺
C ₁ ⁻ , C ₂ ⁻ | Capacitor for Voltage Tripler Connecting Terminal (+)
Capacitor for Voltage Tripler Connecting Terminal (-) | | 40 | 38 | Vci | Input Terminal for Voltage Tripler (Normally V _{c1} = V _{DD}) | | 35 | 33 | Vsout | Voltage Tripler Output Terminal | | 42 | 40 | RESET | Reset Terminal. When the "L" level input over 1.2ms to this terminal, the system will be reset(fosc=80kHz) | # ■ TERMINAL DESCRIPTION | NJU64 | 129 | | | |------------------|------------------|--|--| | PAD 1 | ١0. | SYMBOL | FUNCTION | | FC1 | FG1 | | | | 41 | 39 | V _{DD} | Power Source (+ 3V) | | 34 | 32 | Vss | Power Source (0V) | | 33 | 31 | V 5 | LCD Driving Voltage Output | | 32
31 | 30
29 | 0SC 1
0SC 2 | Oscillation Frequency Adjust Terminals. Normally Open. (Oscillation C and R are incorporated, Osc Frequency=80kHz) For external clock operation, the clock should be input on OSC: | | 43 | 41 | RS | Register selection signal input(Pull-up resistance On-chip) "0": Instruction Register (Writing) Busy Flag, Address Counter (Reading) "1": Data Register (Writing/Reading) | | 44 | 42 | R/W | Read/Write selection signal input(Pull-up Resistance On-chip) "0": Write, "1": Read | | 45 | 43 | E | Read/Write activation signal input | | 50~53 | 48~51 | DB₄∼DB7 | 3-state Data Bus(Upper) to transfer the data between MPU and NJU6428/29.
DB ₇ is also used for the Busy Flag reading. | | 46~49 | 44~47 | DB₀∼DB₃ | 3-state Data Bus(Lower) to transfer the data between MPU and NJU6428/29.
These bus are not used in the 4-bit operation. | | 30~23
54~61 | 28~21
52~59 | COM ₁ ~COM ₁₆ | LCD Common Driving Signal | | 62 | 60 | COMMK | Icon Common Driving Signal | | 63~100
1 ~ 22 | 61~100
1 ~ 20 | SEG 1~SEG60 | LCD Segment Driving Signal | | 39,37
38,36 | 37,35
36,34 | C ₁ ⁺ , C ₂ ⁺
C ₁ ⁻ , C ₂ ⁻ | Capacitor for Voltage Tripler Connecting Terminal (+) Capacitor for Voltage Tripler Connecting Terminal (-) | | 40 | 38 | Vci | Input Terminal for Voltage Tripler (Normally V _{c1} = V _{DD}) | | 35 | 33 | V _{50UT} | Voltage Tripler Output Terminal | | 42 | 40 | RESET | Reset Terminal. When the "L" level input over 1.2ms
to this terminal, the system will be reset(fosc=80kHz) | #### **■ FUNCTIONAL DESCRIPTION** #### (1) Description for each blocks #### (1-1) Register The NJU6428/29 incorporates two 8-bit registers, an Instruction Register (IR) and a Data Register(DR). The Register(IR) stores instruction codes such as "Clear Display" and "Return Home", and address data for Display Data RAM(DD RAM) and Character Generator RAM(CG RAM). The MPU can write the instruction code and address data to the Register(IR), but it cannot read out from the Register(IR). The Register(DR) is a temporary stored register, the data stored in the Register(DR) is written into the DD RAM or CG RAM and read out from the DD RAM or CG RAM. The data in the Register(DR) written by the MPU is transferred automatically to the DD RAM or CG RAM by internal operation. When the address data for the DD RAM or CG RAM is written into the Register(IR), the addressed data in the DD RAM or CG RAM is transferred to the Register(DR). By the MPU read out the data in the Register(DR), the data transmitting process is performed completely. After reading the data in the Register(DR) by the MPU, the next address data in the DD RAM or CG RAM is transferred automatically to the Register(DR) to provide for the next MPU reading. These two registers are selected by the selection signal RS as shown below. Table 1. shows register operation controlled by RS and R/W signals. Table 1. Register Operation | RS | R/W | Selected Register | Operation | |----|-----|-------------------|---| | 0 | 0 | 1 D | Write | | 0 | 1 | in . | Read busy flag(DB ₇) and address counter(DB ₀ ~DB ₆) | | 1 | 0 | ND. | Write (Register(DR) to DD RAM or CG RAM) | | 1 | 1 | DR | Read (DD RAM or CG RAM to Register(DR)) | #### (1-2) Busy Flag (BF) When the internal circuits are in the operation mode, the busy flag (BF) is "1", and any instruction reading is inhibited. The busy flag (BF) is output at DB, when RS="0" and R/W="1" as shown in Table 1. The next instruction should be written after the busy flag(BF) goes to "0". #### (1-3) Address Counter (AC) The address counter(AC) addressing the DD RAM and CG RAM. When the address setting instruction is written into the Register(IR), the address information is transferred from Register(IR) to the Counter(AC). The selection of either the DD RAM or CG RAM is also determined by this instruction. After writing (or reading) the display data to (or from) the DD RAM or CG RAM, the Counter (AC) increments (or decrements) automatically. The address data in the Counter(AC) is output from $DB_6 \sim DB_0$ when RS="0" and R/W="1" as shown in Table 1. # (1-4) Display Data RAM (DD RAM) The display data RAM (DD RAM) consists of 24 x 8 bits stores up to 24-character display data represented in 8-bit code. The DD RAM address data set in the address counter(AC) is represented in Hexadecimal. (1-4-1) 1-line Display (N=0) The relation between DD RAM address and display position on the LCD is shown below. When the display shift is performed, the DD RAM address changes as follows: (Left Shift Display) 22 23 24 17 18 19 20 21 9 10 11 12 13 14 15 16 1ch 2 3 4 17 16 00 0B 0C OD. OE 0F 10 11 12 13 05 | 06 07 08 | 09 0A 02 03 04 (Right Shift Display) | 1ch |-----| | 17 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | OB | 0C | OD | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ### (1-4-2) 2-line Display (N=1) The relation between DD RAM address and display position on the LCD is shown below. Note: In the 2 lines display mode, the 1st and 2nd line address are defined as (00)_H to (0B)_H and (40)_H to (4B)_H. Please note that the end of 1st line address and the beginning of 2nd line address are not consecutive. When the display shift is performed, the DD RAM address changes as follows: (Left Shift Display) (Right Shift Display) | _1_ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | _ | |-----|----|----|----|----|----|----|----|----|----|----|----|-------| | | | | | | | | | | | | | →(0B) | | 4B | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | →(4B) | # (1-5) Character Generator ROM (CG ROM) The Character Generator ROM (CG ROM) generates 5×7 dots character pattern represented in 8-bit character codes. The storage capacity is up to 240 kinds of 5 x 7 dots character pattern. The correspondence between character code and standard character pattern of NJU6428/29 is shown in Table 2-1 and 2-2. User-defined character patterns (Custom Font) are also available by mask option. Table 2-1. CG ROM Character Pattern (ROM version -02) | | | | | | ., | | Up | per 4 | bit | (Hexa | decin | nal) | | | | | | |---------------|---|-------------------|--------|------|-------|-------------|------|------------|---------------|--------|--------------|------------|-----|---|------------|--------------|------| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | Е | F | | | 0 | CG
RAM
(01) | | | | :::: | :::: | ••• | : | ::: | | | | .:;i | | | ::: | | | 1 | (02) | | : | | | | :::: | -::: | | :::: | ::: | ::: | :::: | : <u>;</u> | | | | | 2 | (03) | ::: | :: | :::: | | | | !···· | :::: | | • | • | • | ∴ : | ::: : | | | | 3 | (04) | •: | | :·:: | 1 | •• | : | :::. | | :::: | | | :: | | ::: . | :::: | | | 4 | (01) | :::::: | :::: | ::: | | | | 1 | -::: | | ٠. | | ! ·· | | ļi | ::: | | cimal) | 5 | (02) | · | ••• | | | | :::: | ii | | | :: | • | | | :::: | | | (Hexadecimal | 6 | (03) | | ::: | | | | | i.,.i | | | ::: | ::: | | | :::: | : | | Lower 4 bit (| 7 | (04) | | ። | : | | | •! | 1,:,1 | ::::- | | ·::: | | ::: : | ::: | :::: | ::: | | Lower | 8 | (01) | | | | | | !··: | :::: | :::: | •• | ·i' | ::: | | | : " | .:: | | | 9 | (02) | :::: | | | .:. | 1.1 | ::: | •::: | | | *::: | | ,! | ::: | •• : | ·: | | | A | (03) | : | :4: | ** | ! | :::: | | | | :: | | | • | i | | | | | В | (04) | : | | :: | ! :: | i | ∷ . | • | | :::: | ::: | :: | ! | | :: | | | | С | (01) | : | ; | •: | | | : | | :: | : ::: | :::: | ::: | : | ::: | ::: | | | | D | (02) | | •••• | ••••• | | | i'i | : | ::. | | | | •••• | | : | | | | Е | (03) | •::: | :: | | | •••• | : | •• | | | ::: | 1 | | •••• | | | | | F | (04) | :::- | | •:: | | •••• | ::::1 | • <u>;</u> •• | | | ::: | • • | ::: | ::: | :: | | Table 2-2. CG ROM Character Pattern (ROM version -05) | | | | | | | | Up | per 4 | bit (| Неха | decima | al) | | | | | | |---------------------------|---|--------|-------|------|--------|-----|-------------|-------------|--------------|---|--------|------|------|---------|--------------|-------|-------| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | | | 0 | ****** | : | | | | :::: | •• | :::: | | | | •••• | •:: | ***, | | ••. | | | 1 | | | | | | | .::: | ·::: | ***** | | ::: | .:- | | ·: | :::: | ∺∷ | | | 2 | | ٠., | :: | | | | | ···· | ::::: | | • | ••• | • • • • | .:: : | | | | | 3 | | | | | | •• | : | · | ***** | | ! | ::: | | | .: :. | | | | 4 | | | ::: | :: | ::: | • | | ·i | ***** | : | ٠. | | :. | ::: | : | | | cimal) | 5 | | | #.·. | ::: | | i! | | !! | | | :: | | | | | | | Lower 4 bit (Hexadecimal | 6 | | ::::: | | :::::: | | I ,. | | ١,,١ | 1110
1110
1110
1110
1110
1110
1110
111 | :::: | | | ••• | | | | | 4 bit (| 7 | | | | :: | | 1 | : | ii | -::- | | ::: | :::: | ::: | | | | | Lower | 8 | | :::- | • | | | :::: | ŀ"; | : ∷ : | | ::: | .: | ::: | | ·.! | | | | | 9 | | | : | ::: | | 1:: | : | •: | # ! | | :::: | • | .! | | | | | | A | | | :-:: | :: | | | : | | | | :::: | | : `: | | ::: | :::: | | | В | | | | : | | | : : | 1 | | | ::: | :: | | | | | | | C | | :::: | : | •:. | | | | i | | | | ::.: | | | :::: | ::: | | | D | | -:- | •••• | ***** | | | [:: | .: | | | | .:: | ••• | *** | ::: | l | | | E | | "#" | :: | .: | | ···. | l'": | ••••• | 000 | | ::: | | | 1 | ::: | | | | F | | | | | | •••• | :::: | •: | | ** | ::: | | :: | :: | | 11000 | #### (1-6) Character Generator RAM (CG RAM) The character generator RAM (CG RAM) can store any kind of character pattern in 5 x 7 dots written by the user program to display user's original character pattern and icon data. The CG RAM can store 4 kind of character in 5 x 7 dots mode or 2 kind of character in 5 x 7 dots mode and icon data. To display user's original character pattern stored in the CG RAM, the address data $(00)_{\rm H}$ -(03)H should be written to the DD RAM as shown in Table 2-1 and 2-2. Table 3. show the correspondence among the character pattern, CG RAM address and Data. Table 3. Correspondence of CG RAM address, DD RAM character code and CG RAM character pattern(5 x 7 dots). | Character Code | CG | Character
Pattern | | |----------------------|--|--|---| | (DD RAM Data) | RAM Address | (CG RAM Data) | | | 7 6 5 4 3 2 1 0
← | $\begin{array}{cccc} 4 & 3 & 2 & 1 & 0 \\ \longleftarrow & & - \rightarrow \\ \text{Upper Lower} & \text{bit bit} \end{array}$ | $\begin{array}{c} 4 \ 3 \ 2 \ 1 \ 0 \\ \longleftarrow \longrightarrow \\ \text{Upper Lower} \\ \text{bit bit} \end{array}$ | | | 0000**00 | 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 | | Character Pattern
Example(1)
←Cursor Position | | 0000**01 | 0 0 0 0 0 0 1 0 1 0 1
1 0 0 1 1 1 1 1 1 | | Character Pattern
Example(2)
←Cursor Position | | | 0 0 0
0 0 1 | | | | | | ! | _ | | 0000**11 | 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 | | * : Don't Care | Notes: 1. Character code bit 0, 1 correspond to the CG RAM address 3, 4(2bits:4 patterns). 2. CG RAM address 0 to 2 designate character pattern line position. The 8th line is the cursor position and the display is performed by logical OR with cursor. Therefore, in case of the cursor display, the 8th line should be "0". If there is "1" in the 8th line, the bit "1" is always displayed on the cursor position regardless of cursor existence. 3. Character restaurance resisting correspond to the CG RAM data bits 0 to 4 cross 3. Character pattern row position correspond to the CG RAM data bits 0 to 4 are shown above. 4. CG RAM character patterns are selected when character code bits 4 to 7 are all "0" and it is addressed by character code bits 0 and 1. Therefore, the address (00)_H, (04)_H, (08)_H and (0C)_H select the same character pattern as shown in Table 2-1, 2-2 and Table 3. 5. "1" for CG RAM data corresponds to display On and "0" to display Off. 6. CG RAM address (14)_H to (1F)_H are using for both of character pattern memory and ### (1-7) Icon Display Function The NJU6428/29 can display not only 5 x 7 bits character pattern but also maximum 60 icons. The icon can be displayed by writing bit "1" to each data bit 0 to 4 in the address $(14)_{\rm H} \sim (1F)_{\rm H}$ of CG RAM. The fixed character display code is not affected except CG RAM writing and display ON/OFF instruction. The relation between CG RAM address and icon display position on the LCD is fixed even if the display shift is executed. The relation is shown below: NOTE) The 1F4 corresponds bit 4 of (1F)H in CG RAM. #### < CG RAM vs. SEG terminal for icon display > | for | r icon di | isplay > | |---------|-----------|----------| | CG RAM | data | SEG | | address | 43210 | terminal | | 14 | 00110 | 56~60 | | 15 | 11100 | 51~55 | | 16 | | 46~50 | | 17 | | 41~45 | | 18 | | 36~40 | | 19 | | 31~35 | | 1A | | 26~30 | | 1B | | 21~25 | | 1C | 00100 | 16~20 | | 1D | 00000 | 11~15 | | 1E | 00100 | 6~10 | | 1F | 00000 | 1~5 | Maximum Character Number and Icon Display Number in CG RAM | Haaimum | Character i | Number and Icon Display Number in Co Kini | |----------------------|----------------------|---| | Icon Disp.
Number | Max. Chara
Number | Note | | No Use | 4 Chara. | | | 40 Icons | 3 Chara. | $(03)_{\rm H},(07)_{\rm H},(0B)_{\rm H}$ and $(0F)_{\rm H}$ can not use for Character Memory. | | 60 Icons | 2 Chara. | $(02)_{\rm H}, (03)_{\rm H}, (06)_{\rm H}, (07)_{\rm H}, (0A)_{\rm H}, (0B)_{\rm H}, (0E)_{\rm H}$ and $(0F)_{\rm H}$ can not use for Character Memory. | NOTE) When the icon display function using, the system should be initialized by the software initialization because of the CG RAM does not initialize except the software initialization. #### (1-8) Timing Generator The timing generator generates a timing signals for the DD RAM, CG RAM, CG ROM and other internal circuits operation. RAM read timing for the display and internal operation timing for MPU access are separately generated, so that they may not interfere with each other. Therefore, when the data write to the DD RAM for example, there will be no undesirable influence, such as flickering, in areas other than the display area. #### (1-9) LCD Driver LCD driver consist of 17-common driver and 60-segment driver. When the line number is selected by a program, the required common drivers output the common driving waveform and the other common drivers output non-selection waveform automatically. The 60 bits of character pattern data are shifted in the shift-register and latched when the 60 bits shift performed completely. This latched data controls display driver to output LCD driving waveform. ### (1-10) Cursor Blinking Control Circuit This circuits controls cursor On/Off and the cursor position character blinks. The cursor or blinks appear in the digit residing at the DD RAM address set in the address counter (AC). When the address counter is $(08)_{\rm H}$, a cursor position is shown as follows: | (AC) | AC ₆ | AC ₅ | AC₄
0 | AC3 | AC ₂ | AC ₁ | AC _o | | | | | | | |-------------------|-----------------|-----------------|----------|-----|-----------------|-----------------|-----------------|----|----------|------|------|------|-----------------------------------| | 4 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 88 | 9 | 10 | 11 | 12 | ← Display position | | 1-line
Display | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | ← DD RAM address
(Hexadecimal) | | | | | | | | | | | 1 | Curs | or p | osit | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ← Display position | | 2-line | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | DD RAM address
← (Hexadecimal) | | Display | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | (Hexadecilia) | | | | | | | | | | | ↑ | Curs | or p | osit | ion | (Note) The cursor or blinks also appear when the address counter (AC) selects the CG RAM. But the displayed cursor and blink are meaningless. If the AC storing the CG RAM address data, the cursor and blink are displayed in the meaningless position. #### (2) Power on Initialization by internal circuits # (2-1) Initialization By Internal Reset Circuit The NJU6428/29 is automatically initialized by internal power on initialization circuits when the power is turned on. In the internal power on initialization, following instructions are executed. During the Internal power on initialization, the busy flag (BF) is "1" and this status is kept 10 ms after $V_{\rm DD}$ rises to 2.4V. Initialization flow is shown below: NOTE If the condition of power supply rise time described in the Electrical Characteristics is not satisfied, the internal Power On initialization Circuits will not operated and initialization will not performed. In this case the initialization by MPU software is required. #### (2-2) Initialization By Hardware The NJU6428/29 incorporates RESET terminal to initialize the all system. When the "L" level input over 1.2ms to the RESET terminal, reset sequence is executed. In this time, busy signal output during 10ms after RESET terminal goes to "H". #### · Reset Circuit #### · Timing Chart #### (3) Instructions The NJU6428/29 incorporates two registers, an Instruction Register (IR) and a Data Register (DR). These two registers store control information temporarily to allow interface between NJU6428/29 and MPU or peripheral ICs operating different cycles. The operation of NJU6428/29 is determined by this control signal from MPU. The control information includes register selection signals (RS), read/write signals (R/W) and data bus signals (DBo to DBo). Table 4. shows each instruction and its operating time. Note 1) The execution time mentioned in Table 4. based on fcp or fosc=80kHz. If the oscillation frequency is changed, the execution time is also changed. Note 2) When the reset function is executed, 24-character 1-line is selected. New Japan Radio Co., Ltd. Table 4. Table of Instructions | I NSTRUCT I ONS | RS | R/W | | DB ₆ | $_{\text{DB}_5}^{\text{O}}$ | D
DB4 | DB₃ | DB ₂ | DB 1 | DBo | DESCRIPTION | EXEC
TIME | |--------------------------------|-----|-----|----------|-----------------|-----------------------------|------------|-------------|-----------------|------|-----------|--|--------------| | Maker Testing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | All "0" code is using for maker testing. | - | | Clear Display | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Display clear and sets DD RAM address 0 in AC. | 1.63ms | | Return Home | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | Sets DD RAM address 0 in AC and
returns display being shifted to
original position.
DD RAM contents remain unchanged | 125us | | Entry Mode Set | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1/0 | S | Sets cursor move direction and specifies shift of display are performed in data read/write. I/D=1:Increment, I/D=0:Decrement S=1:Accompanies display shift | 125us | | Display On/Off
Control | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | С | В | Sets of display On/Off(D),
cursor On/Off(C) and blink of
cursor position character(B). | 125us | | Cursor or
Display Shift | 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | * | * | Moves cursor and shifts display without changing DD RAM contents S/C=1: Display shift S/C=0: Cursor shift R/L=1: Shift to the right R/L=0: Shift to the left | 188us | | Function Set | 0 | 0 | 0 | 0 | 1 | ÐL | N | * | * | * | Sets interface data length(DL),
number of display lines(N) and
display character number.
Character font is fixed 5 X 7.
DL=1 : 8 bits , DL=0 : 4 bits
N=1 : 2-line , N=0 : 1-line | 125us | | Set CG RAM
Address | 0 | 0 | 0 | 1 | * | 4 - | _ | Aca | | > | Sets CG RAM address. After this instruction, the data is transferred to/from CG RAM. | 125us | | Set DD RAM
Address | 0 | 0 | 1 | 4 | | · | Add | | | -→ | Sets DD RAM address. After this instruction, the data is transferred to/from DD RAM. | 125us | | Read Busy Flag
& Address | 0 | 1 | BF | ← | | | AC | - | | > | Reads busy flag and AC contents.
BF=1 : Internally operating
BF=0 : Can accept instruction | 0us | | Write Data to | 1 | 0 | ← | | Writ | e Da | ta(D | D RA | M) - | -→ | Writes data into DD or CG RAMs. | 125us | | CG & DD RAM | | | * | * | * | ← | - (C | G RA | M) - | > | | | | Read Data from
CG or DD RAM | 1 | 1 | * | -
* | Rea
* | | ta(D
—(C | | | | Reads data from DD or CG RAMs. | 188us | |
Explanation of
Abbreviation | Acc | : 0 | G RA | M ad | dres | s. | ADD | : DD | RAM | addre | racter generator RAM
ess, Corresponds to cursor address
and CG RAMs | | #### (3-1) Description of each instructions ### (a) Maker Testing | | RS | R/W | DB7 | DB ₆ | DB ₅ | DB₄ | DВз | DB2 | DB ₁ | DBo | |------|----|-----|-----|-----------------|-----------------|-----|-----|-----|-----------------|-----| | Code | 0 | 0 | 0 | 0 | 0 | .0 | 0 | 0 | 0 | 0 | All "0" code in 4-bit length is using for device testing mode (only for maker). Therefore, please avoid all "0" input or no meaning Enable signal input at data "0". (Especially please pay attention the output condition of Enable signal when the power turns on.) #### (b) Clear Display | | RS | R/W | DB_7 | DB6 | DB ₅ | DB₄ | DВз | DB ₂ | DBı | DBo | | |------|----|-----|--------|-----|-----------------|-----|-----|-----------------|-----|-----|--| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Clear display instruction is executed when the code "1" is written into DB_0 . When this instruction is executed, the space code (20) $_{\rm H}$ is written into every DD RAM address, the DD RAM address 0 is set into the address counter and entry mode is set increment. If the cursor or blink are displayed, they are returned to the left end of the LCD (the left end of the 1st line in the 2-line display mode). The S of entry mode does not change. Note: The character pattern for character code (20)_H must be blank code in the user-defined character pattern(Custom font). #### (c) Return Home | | RS | R/W | DB7 | DB6 | DB ₅ | DB ₄ | DB₃ | DB ₂ | DB ₁ | DBo | | |------|----|-----|-----|-----|-----------------|-----------------|-----|-----------------|-----------------|-----|----------------| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * | * = Don't care | Return home instruction is executed when the code "1" is written into DB_1 . When this instruction is executed, the DD RAM address 0 is set into the address counter. Display is returned its original position if shifted, the cursor or blink are returned to the left end of the LCD (the left end of the 1st line in the 2-line display mode) if the cursor or blink are on the display. The DD RAM contents do not change. (d) Entry Mode Set | | RS | R/W | DB ₇ | DB ₆ | DB ₅ | DB4 | DВз | DB ₂ | DB ₁ | DBo | |------|----|-----|-----------------|-----------------|-----------------|-----|-----|-----------------|-----------------|-----| | Code | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S | Entry mode set instruction which sets the cursor moving direction and display shift On/Off, is executed when the code "1" is written into DB_2 and the codes of (I/D) and (S) are written into $DB_1(I/D)$ and $DB_0(S)$, as shown below. (I/D) sets the address increment or decrement, and the (S) sets the entire display shift in the DD RAM writing. | I/D | Function | |-----|---| | 1 | Address increment: The address of the DD RAM or CG RAM increment (+1) when the read/write, and the cursor or blink move to the right. | | 0 | Address decrement: The address of the DD RAM or CG RAM decrement (-1) when the read/write, and the cursor or blink move to the left. | | s | Function | | | Entire display shift. The shift direction is determined by I/D : shift to the left at I/D=1 and | # (e) Display On/Off Control | | RS | R/W | DB ₇ | DBe | DB ₅ | DB4 | DВз | DB ₂ | DB ₁ | DBo | |------|----|-----|-----------------|-----|-----------------|-----|-----|-----------------|-----------------|-----| | Code | 0 | 0 | 0 | 0 | 0 | | 1 | D | С | В | Display On/Off control instruction which controls the whole display On/Off, the cursor On/Off and the cursor position character blink, is executed when the code "1" is written into DB_3 and the codes of (D), (C) and (B) are written into $DB_2(D)$, $DB_1(C)$ and $DB_0(B)$, as shown below. | D | Function | |---|--| | 1 | Display On. | | 0 | Display Off. In this mode, the display data remains in the DD RAM so that it is retrieved immediately on the display when the D change to 1. | | | | | C | Function | | 1 | Cursor On. The cursor is displayed by 5 dots on the 8th line. | | 0 | Cursor Off. Even if the display data write, the I/D etc does not change. | | | | | В | Function | | 1 | The cursor position character is blinking. Blinking rate is 540ms at fosc=80kHz for 12-character 2-line. The cursor and the blink can be displayed simultaneously. | | 0 | The character does not blink. | Character Font 5 x 7 dots (1) Cursor display example Alternating display (2) Blink display example #### (f) Cursor/Display Shift | | RS | R/W | DB7 | DBe | DBs | DB4 | DΒ₃ | DB ₂ | DB 1 | DBo | | |------|----|-----|-----|-----|-----|-----|-----|-----------------|------|-----|----------------| | Code | 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | * | * | * = Don't care | The Cursor/Display shift instruction shifts the cursor position or display to the right or left without writing or reading display data. This function is used to correct or search the display. In the 2-line display, the cursor moves to the 2nd line when it passes the 12th digit of the 1st line. Notice that the 1st and 2nd line displays will shift at the same time. When the displayed data is shifted repeatedly, each line moves only horizontally. The 2nd line display does not shift into the 1st line position. The contents of address counter(AC) does not change by operation of the display shift only. This instruction is executed when the code "1" is written into DB₄ and the codes of (S/C) and (R/L) are written into DB₃(S/C) and DB₂(R/L), as shown below. | S/C | R/L | Function | |-----|-------------|---| | 0 | 0
1
0 | Shifts the cursor position to the left ((AC) is decremented by 1) Shifts the cursor position to the right ((AC) is incremented by 1) Shifts the entire display to the left and the cursor follows it. Shifts the entire display to the right and the cursor follows it. | #### (g) Function Set | | RS | R/W | DB7 | DBe | DBs | DB₄ | DВз | DB_2 | DB ₁ | DBo | | |------|----|-----|-----|-----|-----|-----|-----|--------|-----------------|-----|----------------| | Code | 0 | 0 | 0 | 0 | 1 | DL | N | * | * | * | * = Don't care | Function set instruction which sets the interface data length and number of display lines, is executed when the code "1" is written into DB_5 and the codes of (DL) and (N) are written into DB_4 (DL) and DB_3 (N), as shown below (character font is fixed 5 x 7 dots). (DL) sets the interface data length and (N) sets the number of display lines either the 1-line or 2-line. NOTE This function set instruction must be performed at the head of the program prior to all other existing instructions(except Busy flag/Address read). This function set instruction can not be executed afterwards unless the interface data length change. | DL | Function | |----|--| | 1 | Set the interface data length to 8 bits (DB7 to DB0) | | 0 | Set the interface data length to 4 bits (DB7 to DB4) The data must be sent or received twice in this mode. | | N | Display lines | Display Digit | |---|---------------|---------------| | 0 | 1-line | 24 Character | | 1 | 2-line | 12 Character | #### (h) Set CG RAM Address Set CG RAM address set instruction is executed when the code "1" is written into DB_6 and the address is written into DB_6 to DB_0 as shown above. The address data mentioned by binary code "AAAAA" is written into the address counter (AC) together with the CG RAM addressing condition. After this instruction execution, the data writing/reading is performed into/from the CG RAM. #### (i) Set DD RAM Address Set DD RAM address instruction is executed when the code "1" is written into DB $_7$ and the address is written into DB $_6$ to DB $_0$ as shown above. The address data mentioned by binary code "AAAAAAA " is written into the address counter (AC) together with the DD RAM addressing condition. After this instruction execution, the data writing/reading is performed into/from the DD RAM. Note: In case of the 1-line display(N=0), the address data is $(00)_{\rm H}$ to $(17)_{\rm H}$. And the 2-line display(N=1), the FAAAAAAAJ is $(00)_{\rm H}$ to $(0B)_{\rm H}$ for the 1st line AND $(40)_{\rm H}$ to $(4B)_{\rm H}$ for the 2nd line. #### (j) Read Busy Flag & Address | | RS | R/W | DB7 | DBe | DB ₅ | DB₄ | DВз | DB ₂ | DB ₁ | DBo | |------|----|-----|-----|-------|-----------------|--------|-----|-----------------|-----------------|--------| | Code | 0 | 1 | BF | A | A | A | A | A | A | A | | ' | | | | ←Higl | ner or | der bi | t | Lower | r orde | r bit→ | This instruction reads out the internal status of the NJU6428/29. When this instruction is executed, the busy flag (BF) which indicate internal operation is read out from DB_7 and the address of the CG RAM or DD RAM is read out from DB_6 to DB_0 (the address for the CG RAM or DD RAM is determined by the previous instruction). (BF)="1" indicates that internal operation is in progress. The next instruction is inhibited when (BF)="1". Check the (BF) status before the next write operation. #### (k) Write Data to CG RAM or DD RAM · Write Data to DD RAM | , | RS | R/W | DB7 | DB^{e} | DB_5 | DB4 | DВз | DB2 | DB 1 | $DB_{\rm o}$ | |------|----|-----|-------|----------|--------|-----|-----|------|--------|--------------| | Code | 1 | 0 | D | D | D | D | D | D | D | D | | , |
 | ←High | ner or | der bi | t | | Lowe | r orde | r bit→ | Write Data to DD RAM instruction is executed when the code "1" is written into (RS) and code "0" is written into (R/W). By the execution of this instruction, the binary 8 bit data "DDDDDDDD" are written into the DD RAM. The selection of the DD RAM is determined by the previous instruction (DD RAM must be selected before). After this instruction execution, the address increment(+1) or decrement (-1) is performed automatically according to the entry mode set. And the display shift is also executed according to the previous entry mode set. · Write Data to CG RAM Write Data to CG RAM instruction is executed when the code "1" is written into (RS) and code "0" is written into (R/W). By the execution of this instruction, the binary 5 bit data "DDDDD" are written into the CG RAM. The selection of the CG RAM is determined by the previous instruction (CG RAM must be selected before). After this instruction execution, the address increment (+1) or decrement (-1) is performed automatically according to the entry mode set. And the display shift is also executed according to the previous entry mode set. #### (1) Read Data from CG RAM or DD RAM · Read Data from DD RAM | | RS | R/W | DB7 | DB ₆ | DBs | DB₄ | DB₃ | DB ₂ | DB ₁ | DBo | _ | |------|----|-----|-------|-----------------|--------|-----|-----|-----------------|-----------------|--------|----------| | Code | 1 | 1 | D | D | D | D | D | D | D | D |] | | , | | | ←High | ner or | der bi | t | | Lower | orde | r bit→ | - | Read Data from DD RAM instruction is executed when the code "1" is written into (RS) and (R/W). By the execution of this instruction, the binary 8 bit data "DDDDDDDD" are read out from the DD RAM. · Read Data from CG RAM RS R/W DB₇ DB₆ DB₅ DB₄ DB₃ DB₂ DB₁ DB₀ Code 1 1 * * * * D D D D * = Don't care Higher order bit Lower order bit $$\rightarrow$$ Read Data from CG RAM instruction is executed when the code "1" is written into (RS) and (R/W). By the execution of this instruction, the binary 5 bit data "DDDDD" are read out from the CG RAM. The CG RAM or DD RAM is determined by previous instruction. Before executing this instruction, either the CG RAM address set or DD RAM address set must be executed, otherwise the first read out data are invalidated. When this instruction is serially executed, the next address data is normally read from the second read. The address set instruction is not required if the cursor shift instruction is executed just beforehand (only DD RAM reading). The cursor shift instruction has same function as the DD RAM address set, so that after reading the DD RAM, the address increment or decrement is executed automatically according to the entry mode. But display shift does not occur regardless of the entry mode. Note: The address counter(AC) is automatically incremented or decremented by 1 after write instruction to either of the CG RAM or DD RAM. Even if the read instruction is executed after this instruction, the addressed data can not be read out correctly. For a correct data read out, either the address set instruction or cursor shift instruction (only with DD RAM) must be implemented just before this instruction or from the second time read out instruction execution if the read out instruction is executed 2 times consecutively. # (3-2) Initialization using the internal reset circuits (a) 24-character 1-line display in 8-bit operation (Using internal reset circuits). At the 24-character 1-line display, the Function set, Display On/Off Control and Entry Set Instruction must be executed before the data input, as shown below. The DD RAM of the NJU6428/29 can store up to 24 characters, as explained before, therefore the advertising moving display is available when combined with the display shift operation. Since the display shift operation changes only display position and the DD RAM contents remain unchanged, display data which are entered first can be output when the return home operation is performed. Initialized. No display appears. Set the 8-bit operation, 24-character 1-line display, 5 x 7 dots Font. Turns on display and cursor. Entire display is in space mode set by the initialization. Example for set address increment and cursor right shift when the data write to the DD RAM or CG RAM. (b) 24-character 1-line in 4-bit operation (Using internal reset circuits). In the 4-bit operation, the function set must be performed by the user programming. When the power is turned on, 8-bit operation is selected automatically, therefore the first input is performed under 8-bit operation. In this operation, full instruction can not input because of terminals DB_0 to DB_3 are no connection. Therefore, same instruction must be rewritten on the RS, R/W and DB_7 to DB_4 , as shown below. Since one operation is completed by the two accesses in the 4-bit operation mode, rewrite is required to set the instruction code in full. 16-character 2-line in 4-bit operation is shown as follows: Initialized. No display appears. Set the 4-bit operation. This step is executed in 8-bit mode set by the initialization. Set the 4-bit operation 24-character 1-line display, 5 x 7 dots Font. The 4-bit operation starts from this step. Turn on display and cursor. Entire display is in space mode set by the initialization. Example for set address increment and cursor right shift when the data write to the DD RAM or CG RAM. (c) 12-character 2-line in 8-bit operation (Using internal reset circuits). In the 2-line display, the cursor moves automatically from the 1st to the 2nd line after the 12th character of the first line has been written. Therefore, if the display character is only 8 characters in the 1st line, the DD RAM address must be set by the user programing to change the cursor position to the 2nd line. The 1st and 2nd line displays will shift at the same time. When the displayed data is shifted repeatedly, each line moves only horizontally. The 2nd line display does not shift into the 1st line position. ### (3-3) Initialization by instruction If the power supply conditions for the correct operation of the internal reset circuits are not met, the NJU6428/29 must be initialized by the instruction. (a) Initialization by Instruction in 8-bit interface length. (b) Initialization by Instruction in 4-bit interface length | Power On | lnitialized.
No display appears. | |---|--| | 1 | no dispiny appoars. | | | | | Wait more than 15ms after Voc rises to 2.4V | | | ↓ RS R/W DB ₇ DB ₆ DB ₆ DB | Function Set | | Function Set 0 0 0 0 1 1 | (8-bit interface length) | | 1 | | | Wait more than 4.1ms | | | 1 | - Function Set | | Function Set 0 0 0 0 1 1 | | | 1 | • | | Wait more than 250us | | | ţ | - Function Set | | Function Set 0 0 0 0 1 1 | | | Į. | | | Wait more than 250us | | | RS R/W DB7 DB6 DB5 DB | | | Function Set 0 0 0 0 1 0 | Function Set Set 4-bit interface length by 8-bit interface length. | | 1 | by o bit interiace rength. | | Wait more than 250us | | | 1 | Out the Albib susuation | | Function Set 0 0 0 0 1 0 | | | 0 0 1 * * * | checked before this step. | | Display Off 0 0 0 0 0 0 0 0 0 0 | l mis areb. | | | (BF) check or longer wait- | | Display Clear 0 0 0 0 0 0 0 0 0 0 1 | CIOIL OXCOGLICAL CINO 10 | | | required. | | Entry Mode Set 0 0 0 0 0 0 | Example for set address increment and cursor right | | 0 0 0 1 1 0 | shift when the data write to the DD RAM or CG RAM. | | Write data to the DD/CG RAM and set the Instruction | | #### (4) LCD DISPLAY ### (4-1) Power Supply for LCD Driving NJU6428/29 incorporate voltage tripler to generate LCD driving high voltage and bleeder resistance. The voltage tripler generate about triple voltage from the V_{ci} input voltage (7.8V typ at lout=1mA and V_{ci} =3V) and bleeder resistance generate each LCD driving voltage. The bleeder resistance is set 1/5 bias suitable for 1/18 duty ratio and 1M Ω per resistance Furthermore, the bleeder resistance output the LCD Driving bias level through the voltage follower OP-AMP to get a enough display characteristics with low power consumption. LCD Driving Voltage vs Duty Ratio | Power | Duty Ratio | 1/18 | | |--------|--------------|-------------------------------------|-------------------------------------| | supply | Bias | 1/5 | | | V | 50 UT | V _{DD} to V _{LCD} | | | | VDD | (+3V) | V _{DD} (+3V) | | | <u> </u> | T | | | | 3 | Vci | V _{DD} | | | \
\
\ | # | | | | 7/ | | Vico | | | | * _/// | V ₅ | | | | L c1_ | C2 ⁺ C2 ⁻ 7// | | | | 1 | T+ | (a) 1/5 Bias(1/18 Duty) (Voltage Tripler used example) #### (4-2) Relation between oscillation frequency and LCD frame frequency. As the NJU6428/29 incorporate oscillation capacitor and resistance for CR oscillation, 80kHz oscillation is available without any external components. The LCD frame frequency example mentioned below is based on 80kHz oscillation. (1 clock = 12.5us) 1 frame = $12.5(us) \times 60 \times 18 = 13.5(ms)$ Frame frequency = 1/13.5(ms) = 74.1(Hz) # (5) Interface with MPU NJU6428/29 can be interfaced with both of 4/8-bit MPU and the two-time 4-bit or one-time 8-bit data transfer is available. #### (5-1) 4-bit MPU interface When the interface length is 4-bit, the data transfer is performed by 4 lines connected to DB_4 to DB_7 (DB_0 to DB_3 are not used). The data transfer with the MPU is completed by the two-time 4-bit data transfer. The data transfer is executed in the sequence of upper 4-bit (the data DB_4 to DB_7 at 8-bit length) and lower 4-bit (the data DB_0 to DB_3 at 8-bit length). The busy flag check must be executed after two-time 4bit data transfer (1 instruction execution). In this case the data of busy flag and address counter are also output twice. #### (5-2) 8-bit MPU interface # ■ ABSOLUTE MAXIMUM RATINGS (Ta=25℃) | PARAMETER | SYMBOL
| RATINGS | UNIT | |-----------------------|-----------------|------------------------------|------| | Supply Voltage (1) | V _{DD} | - 0.3 ~ + 7.0 | ٧ | | Input Voltage | Vr | - 0.3 ~ V _{DD} +0.3 | ٧ | | Operating Temperature | Topr | - 30 ~ + 80 | ဗ | | Storage Temperature | Tstg | - 55 ~ + 125 | ဗ | - Note 1) If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability. - Note 2) All voltage values are specified as $V_{ss} = 0V$ - Note 3) The relation: $V_{\text{DD}} \ge V_{\text{c.i}} > V_{\text{5}} \ge V_{\text{5OUT}}$, $V_{\text{SS}} = 0V$ must be maintained. Turn on V_{DD} and $V_{\text{c.i}}$ at same time or turn on V_{DD} first then turn on $V_{\text{c.i}}$ must be required. If the turn on sequence does not meet above conditions, latch up will occur. - Note 4) Decoupling Capacitor(C_D) should be connected between V_{c1} and V_{ss} due to stabilized operation for the tripler. #### ■ FLECTRICAL CHARACTERISTICS $(V_{DD}=3V\pm20\%, Ta=-20 \sim +75^{\circ}C)$ | LEGINIUAL ' | CHANACIENTSTIC | J | * | (100 | | , | | | |-------------|----------------|------------------|--|--------------------|-------|-------------------|------|------| | PARA | METER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNIT | NOTE | | Operating | | V _{DD} | | 2.4 | 3.0 | 3.6 | V | | | | | VIH | | 0.8V _{DD} | | VDD | v | 5 | | Input Vol | tage | VIL | | | | 0.2VDD | V | , | | 0 | | Voн | -l _{он} =0.205mA | 2.0 | | | v | 6 | | Output Vo | Itage | Vol | loL=1.6mA | | | 0.5 | | | | Driver On | -resist.(COM) | R _{сом} | 土ld=5uA(All com.term.) | | | 20 | kΩ | g | | | -resist.(SEG) | Rsec | 土ld=5uA(All seg.term.) | | | 30 | 1/25 | 3 | | | kage Current | LI | $V_{\rm LN}=0 \sim V_{\rm DD}$ | 1 | | 1 | | 7 | | | esist Current | - _P | V _{DD} =3V, RS, R/W, RESET,
DB Terminals | 10 | 25 | 50 | uA | | | Operating | Current | lpp | V _{DD} =3V, fosc=Internal freq | | 100 | 200 | uA_ | 8 | | | Output Volt. | Vup | V _c ;=3V, I _{OUT} =1mA, Ta=25℃ | - 4.6 | - 4.8 | | ٧ | | | Voltage | Input Volt. | Voi | | * | | V _{DD} | V | | | Tripler | Conv. Effici | Vef | R _L =∞ | 95.0 | 99.9 | | % | | | Bleeder r | esistance | Rв | V _{DD} -V5=3V, (Per Resistance) | | 1 | | MΩ | | | | on Frequency | fosc | V _{DD} =3V, Ta=25℃ | 56 | 80 | 104 | kHz | | | | ng Voltage | VLCD | V _{5OUT} Terminal, V _{DD} =3V | Vss | | V _{DD} - | ٧ | 10 | | | | | | l | | 13.5 | | | * Min value is checking. Note 5) Input/Output structure except LCD driver are shown below: E Terminal RS,R/W Terminals Note 6) Apply to the Output and Input/Output Terminal. Note 7) Except pull-up resistance current and output driver current. Note 8) Except Input/output current but including the current flow on bleeder resistance. If the input level is medium, current consumption will increase due to the penetration current. Therefore, the input level must be fixed to "H" or "L". #### Operating Current Measurement Circuit Note 9) R_{COM} and R_{SEG} are the resistance values between power supply terminals (V_{DD} , V_{SOUT}) and each common terminal(COM_1 to COM_{16} / COMMK), and supply voltage (V_{DD} , V_{SOUT}) and each segment terminal(SEG_1 to SEG_{60}) respectively, and measured when the current Id is flown on every common and segment terminals at a same time. Note 10)Apply to the output voltage from each COM and SEG are less than ±0.15V against the LCD driving constant voltage (VDD, VSOUT) at no load condition. Voltage Tripler Measurement Circuit Internal Bleeder Resistance and Voltage Follower * Voltage Tripler Internal Clock Frequency = 10kHz • Bus timing characteristics (V_{DD} = 3.0 $V\pm20\%$, V_{BB} = 0V, Ta = -20 \sim +75 $^{\circ}$ C) Write operation (Write from MPU to NJU6428/29) | PARAMETE | R | SYMBOL | MIN | MAX | CONDITION | UNIT | |----------------------|--------------|-----------------|-----|-----|-----------|----------| | Enable Cycle Time | | toyce | 1 | | | us | | Enable Pulse Width | "High" level | Pwen | 400 | | | 1 | | Enable Rise Time, Fa | ter, ter | | 20 | | İ | | | | RS, R/W, E | tas | 40 | | fig.1 | ns | | Address Hold Time | | t _{AH} | 10 | | | Ì | | Data Set up Time | | tosw | 60 | | _ | | | Data Hold Time | | tн | 10 | | | <u> </u> | Timing Characteristics (Write operation) fig. 1 Read operation (Read from NJU6428/29 to MPU) | PARAMETE | R | SYMBOL | MIN | MAX | CONDITION | UNIT | |----------------------|---------------|--------|-----|-----|-----------|------| | Enable Cycle Time | t cyce | 1 | | | us | | | Enable Pulse Width | Pwen | 600 | | | | | | Enable Rise Time, Fa | ter, tef | | 20 | | | | | Set up Time | RS, R/W, E | tas | 40 | | fig.2 | ns | | Address Hold Time | | tan | 10 | | | | | Data Delay Time | toow | - | 600 | 1 | | | | Data Hold Time | | todh | 20 | | 1 | | Timing Characteristics (Read operation) fig. 2 • The Input Condition when using the Hardware Reset Circuit Input Timing | PARAMETER | SYMBOL | CONDITION | MIN | MAX | UNIT | |-----------------------------|--------|------------|-----|-----|------| | Reset Input "L" Level Width | trsL | fosc=80kHz | 1.2 | - | ms | · Power Supply Condition when using the internal initialization circuit(Ta = -20 ~ +75℃) | PARAMETER | SYMBOL | CONDITION | MIN | MAX | UNIT | |------------------------|--------|-----------|-----|-----|------| | Power Supply Rise Time | trod | | 0.1 | 5 | | | Power Supply OFF Time | toff | | 1 | | ms | Since the internal initialization circuits will not operate normally unless the above conditions are met, in such a case initialize by instruction. (Refer to initialization by the instruction) 0.1ms≦trpp≦5ms t_{off}≧1ms toff specifies the power off time in a short period off or cyclical on/off. # ■ LCD DRIVING WAVE FORM #### 1/18 Duty Driving # **APPLICATION CIRCUITS (1)** (1) 24-character 1-line WITH iCON Display Example (NJU6428) (2) 24-character 1-line WITH iCON Display Example (NJU6429) # ■ APPLICATION CIRCUITS (2) (1) 12-character 2-line with Icon Display Example (NJU6428) (2) 12-character 2-line with Icon Display Example (NJU6429) # ■ APPLICATION CIRCUITS (3) Z80® is trade mark of Zilog Inc. (1) 8 bit MPU interface example (LCD driving voltage is generated by NJU6428) 280® is trade mark of Zilog Inc. (2) 8 bit MPU interface example (LCD driving voltage is generated by NJU6429) # NJU6428/29 # **MEMO** [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.