

NPN SILICON TRANSISTOR

NE687M23

FEATURES

NEW MINIATURE M23 PACKAGE:

- World's smallest transistor package footprint leads are completely underneath package body
- Low profile/0.55 mm package height
- Ceramic substrate for better RF performance
- HIGH GAIN BANDWIDTH PRODUCT:

fT = 5.5 GHz

LOW NOISE FIGURE:

NF = 1.5 dB at 2 GHz

DESCRIPTION

The NE687M23 transistor is designed for low noise, high gain, and low cost requirements. This high fT part is well suited for very low voltage/low current designs for portable wireless communications and cellular radio applications. NEC's new low profile/ceramic substrate style "M23" package is ideal for today's portable wireless applications. The NE687 is also available in six different low cost plastic surface mount package styles.

OUTLINE DIMENSIONS (Units in mm)

PACKAGE OUTLINE M23

BOTTOM VIEW

PIN CONNECTIONS

- 1. Collector
- 2. Emitter
- 3. Base

ELECTRICAL CHARACTERISTICS (TA = 25°C)

PART NUMBER EIAJ¹ REGISTERED NUMBER PACKAGE OUTLINE			NE687M23 2SC5653 M23			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	
f⊤	Gain Bandwidth at VcE = 1 V, Ic = 5 mA, f = 2 GHz	GHz		5.5		
NF	Noise Figure at VcE = 1 V, Ic = 5 mA, f = 2 GHz	dB		1.5		
S21E ²	Insertion Power Gain at VcE = 1 V, Ic = 5 mA, f = 2 GHz	dB		4.5		
hFE ²	Forward Current Gain at VcE = 2 V, Ic = 20 mA		70		130	
Ісво	Collector Cutoff Current at VcB = 5 V, IE = 0	μΑ			0.1	
ІЕВО	Emitter Cutoff Current at VEB = 1 V, Ic = 0	μА			0.1	
CRE ³	Feedback Capacitance at VcB = 0.5 V, IE = 0, f = 1 MHz	pF		0.8		

Notes:

- 1. Electronic Industrial Association of Japan.
- 2. Pulsed measurement, pulse width \leq 350 $\mu s,$ duty cycle \leq 2 %.
- 3. Capacitance is measured with emitter and case connected to the guard terminal at the bridge.

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vсво	Collector to Base Voltage	٧	5
VCEO	Collector to Emitter Voltage	V	3
Vево	Emitter to Base Voltage	V	2
Ic	Collector Current	mA	30
PT	Total Power Dissipation	mW	TBD
TJ	Junction Temperature	°C	150
Тѕтс	Storage Temperature	°C	-65 to +150

Note:

1. Operation in excess of any one of these parameters may result in permanent damage.

TYPICAL PERFORMANCE CURVES (TA = 25°C)

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

Collector to Emitter Voltage, VCE (V)

GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

Base to Emitter Voltage, VCE (V)

DC CURRENT GAIN vs. COLLECTOR CURRENT

NOISE FIGURE/ASSOCIATED GAIN vs. COLLECTOR CURRENT

Collector Current, Ic (mA)

Collector Current, Ic (mA)