

20-Bit Low Power Delta Sigma Modulator

nAD2001

FEATURES

- Low power (6mW)
- Standby mode
- 5 volt supply
- $0.7 \text{ mm}^2 \text{ area}$
- 0.8µm dual poly CMOS process
- Available as macrocell
- 20 bit dynamic range in 20Hz bandwidth
- 17 bit dynamic range in 300Hz bandwith

APPLICATIONS

- Magnetic sensors
- Seismic instrumentation
- Medical instrumentation

GENERAL DESCRIPTION

The nAD2001 is a compact, second order delta sigma modulator. Only a decimation filter must be added to achieve a complete 20 bit or 17 bit A/D-converter. It utilizes a switched capacitor CMOS architecture to achieve low power dissipation and a high dynamic range. A fully differential implementation insures low sensitivity to interference from the digital part of the system, when the modulator is used as a macrocell in system ICs. The converter is very compact, typically occupying less than 0.7 mm² in a 0.8µm dual polysilicon CMOS technology.

The nAD2001 features a standby mode - in which the static current consumption is reduced to less than $1\mu A$. It is therefore an excellent choice for battery operated systems.

QUICK REFERENCE DATA

(Conditions: 25°C, 5V supply, 2.25V input range)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
$V_{ m DD}$	Supply voltage		4.75	5.0	5.25	V
I_{DD}	Supply current			1.1		mA
P_{D}	Power dissipation			5.5		mW
SNR	Signal to noise ratio	$f_{IN} = 20Hz$		116		dB
SINAD	Signal to noise and	$f_{IN} = 20Hz$		116		dB
	distortion ratio					
V _{OS}	Offset error				TBD	mV
$C_{\rm I}$	Input capacitance			10		pF
f_{CK}	Clock frequency				620	kHz
T_{OPER}	Operating temperature		-40		85	°C
	range					

Table 1. Quick reference data

nAD2001 20-Bit Low Power Delta Sigma Modulator

ORDERING INFORMATION

Type number	Name	Description	Version
nAD2001-CORE	CORE	layout in GDSII-format	c-1

Table 2. Ordering information

BLOCK DIAGRAM

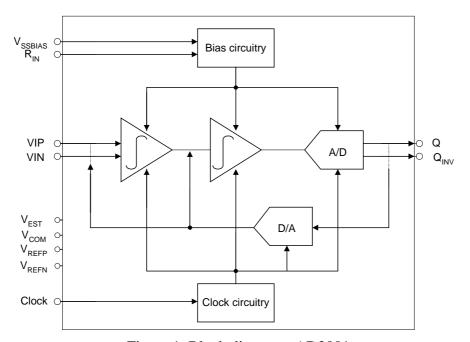


Figure 1. Block diagram nAD2001

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - PHONE + 4772898900 - FAX + 4772898989

Revision: 1 Page 2 of 8 July 1997

ELECTRICAL SPECIFICATIONS

nAD2001 20-Bit Low Power Delta Sigma Modulator

 $(V_{DD} = 5.0V, f_{CK} = 620kHz, T = 25^{\circ}C)$

Symbol	Parameter (condition)	Test Level	Min.	Тур.	Max.	Units
	DC Accuracy					
V _{OS}	Offset Error				TBD	mV
$\epsilon_{ m G}$	Gain Error				TBD	
	Dynamic Performance					
SNR	Signal to Noise Ratio					
	$f_{IN} = 20Hz$			116*		dB
	$f_{IN} = 300Hz$			98*		dB
THD	Total Harmonic Distortion					
	$f_{IN} = 20Hz$			TBD		%
	$f_{IN} = 300Hz$			TBD		%
SINAD	Signal to Noise and Distortion Ratio					
	$f_{IN} = 20Hz$			116*		dB
	$f_{IN} = 300Hz$			98*		dB
	Analog Input					
V_{FSR}	Input Voltage Range (Differential)		- 2		+ 2	V
V_{CMI}	Common Mode Input Voltage		TBD	2.5	TBD	V
C_{I}	Input Capacitance			10		pF
	Reference Voltages					
V_{REFP}	Positive Input Voltage		TBD	3.5	TBD	V
V_{REFN}	Negative Input Voltage		TBD	1.5	TBD	V
	Digital Output					
V_{OL}	Logic "0" voltage				0.4	V
V_{OH}	Logic "1" voltage			90% V _{DD}		
	Power Supply					
V_{DD}	Supply Voltage		4.75	5.0	5.25	V
I_{DD}	Supply Current			1.1		mA
P _D	Power Dissipation			5.5		mW

^{*} design target - 6dB

Table 3. Electrical specifications

Test Levels

Test Level I: 100% production tested at +25°C

Test Level II: 100% production tested at +25°C and sample tested at specified

temperatures

Test Level III: Sample tested only

Test Level IV: Parameter is guaranteed by design and characterization testing

Test Level V: Parameter is typical value only

Test Level VI: 100% production tested at +25°C. Guaranteed by design and

characterization testing for industrial temperature range

ABSOLUTE MAXIMUM RATINGS

Supply voltages

Input voltages

nAD2001 20-Bit Low Power Delta Sigma Modulator

Temperatures

Note: Stress above one or more of the limiting values may cause permanent damage to the device.

PIN FUNCTIONS

Pin Name	Description	
VIN VIP	Differential input signal pins.	
$V_{REFP} V_{REFN}$	Reference input pins. ($V_{REFP} = 3.5V$, $V_{REFN} = 1.5V$)	
R_{IN}	Connect a $270k\Omega$ resistor between AV _{DD} and R _{IN} . Connect a 100nF capacitor between	
	V _{SSBIAS} and R _{IN} to protect the bias circuit from external and internal noise sources.	
V_{EST}	Analog input. $(V_{EST} = 1.2V)$	
V_{COM}	Analog input. $(V_{COM} = 2.5V)$	
Clock	Clock input.	
$Q Q_{INV}$	Digital outputs.	
Sel_bias	Connect to V _{SS.}	
Sub	Connect to ground.	
AV_{DD}	Analog power.	
$\mathrm{DV}_{\mathrm{DD}}$	Digital power.	
AV_{SS}	Analog ground.	
DV_{SS}	Digital ground.	
V _{SSBIAS}	Ground pin for bias circuit, should not be connected to PCB-ground.	

Table 4. Pin functions

PIN ASSIGNMENT

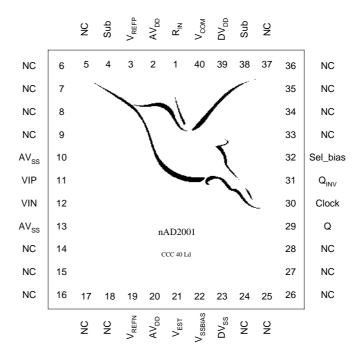


Figure 2. Pin assignment

Nordic VLSI ASA Vestre Rosten 81, N-7075 Tiller, Norway PHONE +4772898900 FAX +4772898989 Revision: 1 Page 4 of 8 July 1997

nAD2001 20-Bit Low Power Delta Sigma Modulator

TIMING DIAGRAM

To be included

Figure 3. Timing diagram

TYPICAL PERFORMANCE CURVES

To be included

Figure 4. Typical performance curves

PACKAGE OUTLINE

Encl.

Please note that the no. 1 pin marker is **under** the CCC40 package.

Figure 5. Package outline

DEFINITIONS

Data sheet status			
Objective product specification	This datasheet contains target specifications for product development.		
Preliminary product	This datasheet contains preliminary data; supplementary data may be		
specification	published from Nordic VLSI ASA later.		
Product specification	This datasheet contains final product specifications.		
Limiting values			
Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Specifications sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			
Where application information is given, it is advisory and does not form part of the specification.			

Table 5. Definitions

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic VLSI ASA customers using or selling these products for use in such applications do so at their own risk and agree fully indemnify Nordic VLSI ASA for any damages resulting from such improper use or sale.

Nordic VLSI ASA Vestre Rosten 81, N-7075 Tiller, Norway - PHONE +4772898900 - FAX +4772898989 Revision: 1 Page 5 of 8 July 1997

nAD2001 20-Bit Low Power Delta Sigma Modulator

APPLICATION INFORMATION

(Preliminary)

References

The references should be bypassed to ground using 100nF surface mounted capacitors as close - thar is, not more than 3mm from the package.

Analog input

Clock

Digital outputs

PCB layout and decoupling

A well designed PCB is necessary to get good spectral purity from any high performance ADC. A multilayer PCB with a solid ground plane is recommended for optimum performance. If the system has a split analog and digital ground plane, it is recommended that all ground pins on the ADC are connected to the analog ground plane. It is our experience that this gives the best performance. The power supply pins should be bypassed using 100nF surface mounted capacitors as close to the package pins as possible. Analog and digital supply pins should be separately filtered. One should make sure that the analog and digital supply voltages are equal.

Dynamic testing

To be inserted

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - PHONE + 4772898900 - FAX + 4772898989

Revision: 1 Page 6 of 8 July 1997

nAD2001 20-Bit Low Power Delta Sigma Modulator

YOUR NOTES

 Nordic VLSI ASA
 Vestre Rosten 81, N-7075 Tiller, Norway
 PHONE + 4772898900
 FAX + 4772898989

 Revision: 1
 Page 7 of 8
 July 1997

nAD2001 20-Bit Low Power Delta Sigma Modulator

DESIGN CENTER

Nordic VLSI ASA Vestre Rosten 81 N-7075 TILLER NORWAY

Telephone: +47 72 89 89 00 Telefax: +47 72 89 89 89

E-mail: For further information regarding datasheets, please send mail to datasheet@nvlsi.no

World Wide Web/Internet: Visit our site at http://www.nvlsi.no

Preliminary specification. Revision Date: 17.07.1997.

Datasheet order code: 170797-nAD2001.

All rights reserved ®. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

Nordic VLSI ASA - Vestre Rosten 81, N-7075 Tiller, Norway - PHONE + 4772898900 - FAX + 4772898989

Revision: 1 Page 8 of 8 July 1997