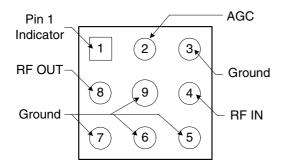

GaInP/GaAs HBT MMIC DISTRIBU **AMPLIFIER DC TO 12GHz**

Typical Applications

- Narrow and Broadband Commercial and Military Radio Designs
- Linear and Saturated Amplifiers
- Gain Stage or Driver Amplifiers for MW Radio/Optical Designs

Product Description


The NDA-322 Casacadable Broadband GalnP/GaAs MMIC amplifier is a low-cost, high-performance solution for high frequency RF, microwave, or optical amplification needs. This 50Ω gain block is based on a reliable HBT proprietary MMIC design, providing unsurpassed performance for small-signal applications. Designed with an external bias resistor, the NDA-322 provides flexibility and stability. In addition, the NDA-320-D chip was designed with an additional ground via, providing improved thermal resistance performance. The NDA-series of distributed amplifiers provide design flexibility by incorporating AGC functionality into their designs.

- Solder pads are coplanar to within ±0.025 mm.
 Lid will be centered relative to frontside metallization with a tolerance of ±0.13 mm.
 Mark to include two characters and dot to reference pin 1.

Optimum Technology Matching® Applied

☐ Si BJT GaAs HBT GaAs MESFET Si Bi-CMOS SiGe HBT Si CMOS **▼** GalnP/HBT GaN HEMT

Functional Block Diagram

Package Style: MPGA, Bowtie, 3x3, Ceramic

Features

- Reliable, Low-Cost HBT Design
- 9.0dB Gain/P1dB of 13.1dBm @ 2GHz
- Fixed Gain or AGC Operation
- 50Ω I/O Matched for High Freq. Use
- Secondary Ground-Via for Better Thermal Management

Ordering Information

NDA-322

GaInP/GaAs HBT MMIC Distributed Amplifier DC to 12GHz

RF Micro Devices. Inc. 7628 Thorndike Road Greensboro, NC 27409, USA


Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com

Rev A0 020115 4-413

Absolute Maximum Ratings

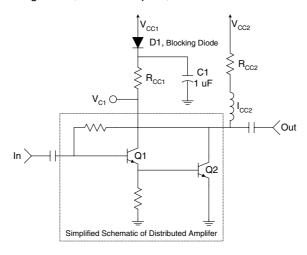
Parameter	Rating	Unit
RF Input Power	+20	dBm
Power Dissipation	300	mW
Device Current, I _{CC1}	42	mA
Device Current, I _{CC2}	48	mA
Junction Temperature, Tj	200	°C
Operating Temperature	-45 to +85	°C
Storage Temperature	-65 to +150	°C

Exceeding any one or a combination of these limits may cause permanent damage.

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Davamatav	Specification			11!4	O a sa aliai a sa	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall					V_{CC1} =+10V, V_{CC2} =+10V, V_{C1} =+4.75V, V_{C2} =+2.98V, I_{CC1} =24mA, I_{CC2} =40mA, I_{CC2} =50 Ω , I_{A} =+25°C	
Small Signal Power Gain, S21	8.0	9.0 10.0		dB dB	f=0.1 GHz to 6.0 GHz f=6.0 GHz to 10.0 GHz	
Gain Flatness Input and Output VSWR	8.0	10.0 ±0.6 1.9:1		dB dB	f=10.0GHz to 12.0GHz f=0.1GHz to 8.0GHz f=0.1GHz to 10.0GHz	
Bandwidth, BW Output Power @ 1dB Compression		1.9:1 12.5 13.1		GHz dBm	f=10.0GHz to 12.0GHz BW3 (3dB) f=2.0GHz	
		17.0 9.0		dBm dBm	f=6.0GHz f=12.0GHz	
Noise Figure, NF Third Order Intercept, IP3 Reverse Isolation, S12 Device Voltage, V ₇		6.4 23.0 -15 4.7		dB dBm dB V	f=2.0GHz f=2.0GHz f=0.1GHz to 12.0GHz	
AGC Control Voltage, V _{C1}	3.6	4.0	4.2	V		
Gain Temperature Coefficient, $\delta G_T/\delta T$		-0.0015		dB/°C		
MTTF versus						
Junction Temperature Case Temperature Junction Temperature		85 113.9		°C °C		
MTTF		>1,000,000		hours		
Thermal Resistance θ_{JC}		124		°C/W	Thermal Resistance, at any temperature (in $^{\circ}$ C/Watt) can be estimated by the following equation: θ_{JC} ($^{\circ}$ C/Watt)=124[T $_{J}$ ($^{\circ}$ C)/113.9]	

Suggested Voltage Supply: V_{CC1}≥4.7V, V_{CC2}≥5.0V


4-414 Rev A0 020115

Pin	Function	Description	Interface Schematic
1	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
2	VCC1	AGC bias pin. Biasing is accomplished with an external series resistor to V_{CC1} . The resistor is selected to set the DC current into this pin to a desired level. The resistor value is determined by the following equation: $R = \frac{(V_{CC1} - V_{DEVICE1})}{I_{CC1}}$ Care should also be taken in the resistor selection to ensure that the current into the part never exceeds maximum datasheet operating (mA) over the planned operating temperature. This means that a resistor between the supply and this pin is always required, even if a supply near 5.0V is available, to provide DC feedback to prevent thermal runaway. Alternatively, a constant current supply circuit may be implemented. Because DC is present on this pin, a DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. The supply side of the bias network should also be well bypassed.	
3	GND	Same as pin 1.	
4	RF IN	RF input pin. This pin is NOT internally DC blocked. A DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. DC coupling of the input is not allowed, because this will override the internal feedback loop and cause temperature instability.	
5	GND	Same as pin 1.	
6	GND	Same as pin 1.	
7	GND	Same as pin 1.	
8	RF OUT AND VCC2	RF output and bias pin. Biasing is accomplished with an external series resistor and choke inductor to V_{CC2} . The resistor is selected to set the DC current into this pin to a desired level. The resistor value is determined by the following equation: $R = \frac{(V_{CC2} - V_{DEVICE2})}{I_{CC2}}$ Care should also be taken in the resistor selection to ensure that the current into the part never exceeds maximum datasheet operating current (mA) over the planned operating temperature. This means that a resistor between the supply and this pin is always required, even if a supply near 5.0V is available, to provide DC feedback to prevent thermal runaway. Alternatively, a constant current supply circuit may be implemented. Because DC is present on this pin, a DC blocking capacitor, suitable for the frequency of operation, should be used in most applications. The supply side of the bias network should also be well bypassed.	
9	GND	Same as pin 1.	

Rev A0 020115 4-415

Typical Bias Configuration

Application notes related to biasing circuit, device footprint, and thermal considerations are available on request.

Bias Resistor Selection	
R _{CC1} :	
For 4.7V <v<sub>CC1<5.0V</v<sub>	
$R_{CC1}=0\Omega$	
For 5.0V <v<sub>CC1<10.0V</v<sub>	
$R_{CC1} = V_{CC1} - 4.7/0.024\Omega$	
R _{CC2} :	
For 5.0V <v<sub>CC2<10.0V</v<sub>	
$R_{CC1} = V_{CC2} - 2.9/0.040\Omega$	

Typical Bias Parameters for V _{CC1} =V _{CC2} =10V:								
V _{CC1} (V)	V _{CC2} (V)	I _{CC1} (mA)	V _{C1} (V)	$R_{CC1}(\Omega)$	I _{CC2} (mA)	V _{C2} (V)	$R_{CC2}(\Omega)$	
10	10	24	4.75	220	40	2.9	150	

Application Notes

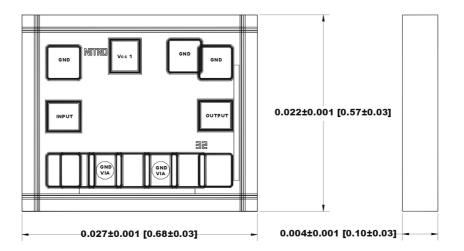
Die Attach

The die attach process mechanically attaches the die to the circuit substrate. In addition, it electrically connects the ground to the trace on which the chip is mounted, and establishes the thermal path by which heat can leave the chip.

Assembly Procedure

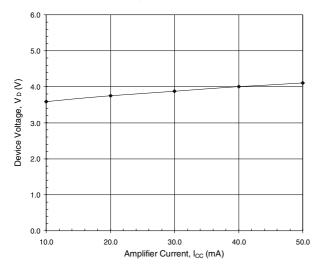
Epoxy or eutectic die attach are both acceptable attachment methods. Top and bottom metallization are gold. Conductive silver-filled epoxies are recommended. This procedure involves the use of epoxy to form a joint between the backside gold of the chip and the metallized area of the substrate. A 150°C cure for 1 hour is necessary. Recommended epoxy is Ablebond 84-1LMI from Ablestik.

Bonding Temperature (Wedge or Ball)

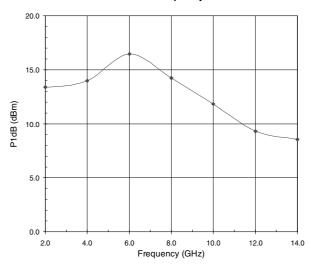

It is recommended that the heater block temperature be set to 160°C±10°C.

4-416 Rev A0 020115

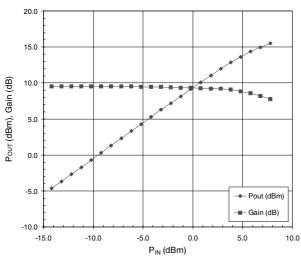
Chip Outline Drawing - NDA-320-D

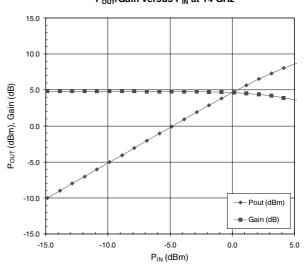

Chip Dimensions: 0.027" x 0.022" x 0.004"

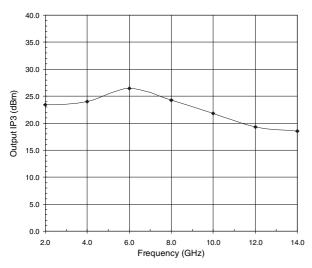
UNITS: INCHES [mm]



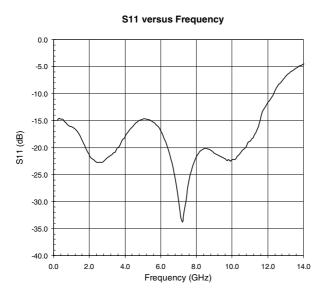
Rev A0 020115 4-417

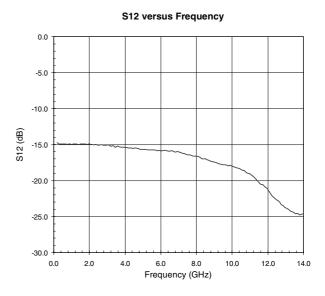

Device Voltage versus Amplifier Current

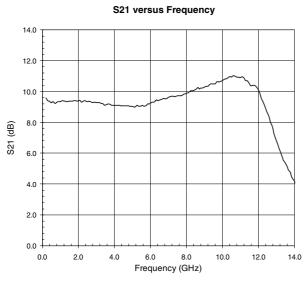

P1dB versus Frequency at 25°C

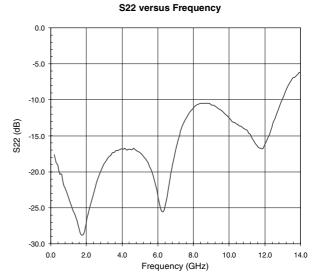

P_{OUT} /Gain versus P_{IN} at 6 GHz

P_{OUT}/Gain versus P_{IN} at 14 GHz




Third Order Intercept versus Frequency at 25°C




4-418 Rev A0 020115 The s-parameter gain results shown below include device performance as well as evaluation board and connector loss variations. The insertion losses of the evaluation board and connectors are as follows:

1 GHz to 4GHz=-0.06dB 5GHz to 9GHz=-0.22dB 10GHz to 14GHz=-0.50dB 15GHz to 20GHz=-1.08dB

Rev A0 020115 4-419

4-420 Rev A0 020115