NanoAmp Solutions, Inc.

1982 Zanker Road, San Jose, CA 95112 ph: 408-573-8878, FAX: 408-573-8877 www.nanoamp.com

N02C1630E1AM

Advance Information

N02C1630E1AM

Low Voltage, Extended Temperature

FLASH AND SRAM COMBO MEMORY

FEATURES

 Organization: 1,048K x 16 (Flash) 128K x 16 (SRAM)

· Basic configuration:

Flash

Thirty-nine erase blocks

- Eight 4K-word parameter blocks
- Thirty-one 32K-word main memory blocks SRAM

2Mb SRAM for data storage

- 128K-words
- F_Vcc, F_Vpp, S_Vcc voltages
 - 2.7V (MIN)/3.3V (MAX) F_Vcc read voltage
 - 2.7V (MIN)/3.3V (MAX) S_Vcc read voltage
 - 1.8V (TYP) F_VPP (in-system PROGRAMERASE) 12V ±5% (HV) F_VPP (production programming
 - compatibility)
- 1.0V (MIN) S_Vcc (SRAM data retention)
- Asynchronous access time
 Flash access time: 90ns @ 2.7V F_Vcc
 SRAM access time: 85ns @ 2.7V S_Vcc
- · Low power consumption
- · Enhanced WRITE/ERASE suspend option
- · Read/Write SRAM during program/erase of Flash
- 128-bit chip OTP protection register for security purposes
- · Cross-compatible command set support
- PROGRAM/ERASE cycles 100,000 WRITE/ERASE cycles per block

C	PTIONS	MARKING
•	Timing 90ns	-9
•	Boot Block Top Bottom	T B
•	Operating Temperature Range Industrial Temperature (-40°C to +85°C)	1

Part Number Example: N02C1630E1AM-9TI

Stock No. 23134-C11/01 1

GENERAL DESCRIPTION

The N02C1630E1AM, a combination of Flash and SRAM memory, provides a compact, low-power solution for systems where PCB real estate is at a premium. The device contains a nonvolatile, electrically block-erasable (flash), programmable, read-only memory containing 16,777,216 bits organized as 1,048,576 words (16 bits).

The device also provides soft protection for blocks by configuring soft protection registers with dedicated command sequences. A 128-bit (OTP)one time programmable register is provided.

The embedded WORD WRITE and BLOCK ERASE functions are fully automated by an on-chip write state machine (WSM). The WSM simplifies these operations and relieves the system processor of secondary tasks. An on-chip status register, can be used to monitor the WSM status to determine the progress of a PROGRAM/ERASE command

The erase/program suspend functionality allows compatibility with existing EEPROM emulation software packages.

The device takes advantage of a dedicated power source for the Flash device (F_Vcc) and a dedicated power source for the SRAM device (S_Vcc), both at 2.7V–3.3V for optimized power consumption and improved noise immunity. The separate S_Vcc pin for the SRAM provides the data retention capability whenever required. The data retention S_Vcc is specified as low as 1.0V. The device supports two VPP voltages; in-circuit VPP of 1.65V–3.3V and production compatibility of 12V $\pm 5\%$. The 12V $\pm 5\%$ VPP is supported for a maximum of 100 cycles and 10 cumulative hours.

The N02C1630E1AM contains an asynchronous 2Mb

SRAM organized as 128K-words by 16 bits. This device is fabricated using an advanced CMOS process and high-speed/ultra-low-power circuit technology.

The N02C1630E1AM is packaged in a 66-ball FBGA package with 0.80mm pitch.

Advance

PART NUMBERING INFORMATION

NanoAmp's low-power devices are available with several different combinations of features. Valid combinations of features and their corresponding part numbers are listed in Table 1.

Part Number Chart

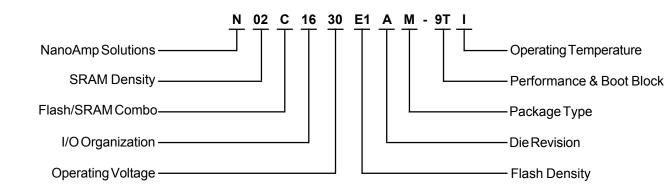
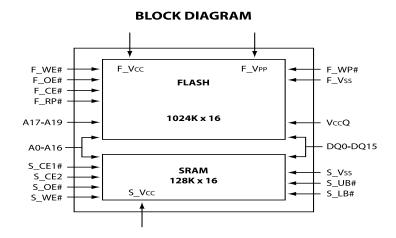
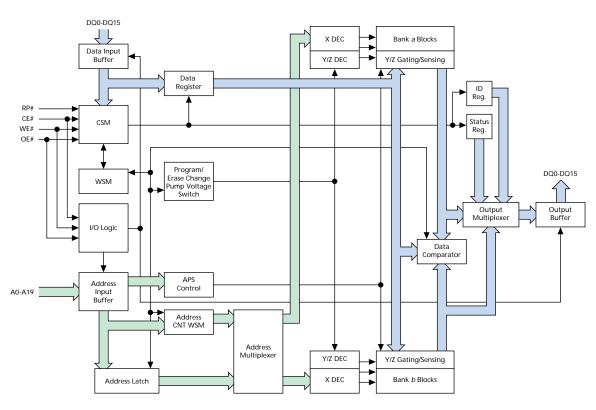




Table 1
Valid Part Number Combinations

PART NUMBER	ACCESS TIME (ns)	BOOT BLOCK	OPERATING TEMPERATURE RANGE
N02C1630E1AM-9BI	90	Bottom	-40°C to +85°C
N02C1630E1AM-9TI	90	Top	-40°C to +85°C

FLASH FUNCTIONAL BLOCK DIAGRAM

BALL DESCRIPTIONS

66-BALLFBGA NUMBERS	SYMBOL	TYPE	DESCRIPTION
A4, A5, A6, A7, A8, B3, B4, B5, B6, E5, G3, G4, G5, G6, G7, G8, G9, H4, H5, H6	A0-A19	Input	Address Inputs: Inputs for the addresses during READ and WRITE operations. Addresses are internally latched during READ and WRITE cycles. Flash: A0–A19; SRAM: A0–A16.
H7	F_CE#	Input	Flash Chip Enable: Activates the device when LOW. When CE# is HIGH, the device is disabled and goes into standby power mode.
H9	F_OE#	Input	Flash Output Enable: Enables flash output buffers when LOW. When F_OE# is HIGH, the output buffers are disabled.
C3	F_WE#	Input	Flash Write Enable: Determines if a given cycle is a flash WRITE cycle. F_WE# is active LOW.
D4	F_RP#	Input	Reset. When F_RP# is a logic LOW, the device is in reset, which drives the outputs to High-Z and resets the WSM. When F_RP# is a logic HIGH, the device is in standard operation. When F_RP# transitions from logic LOW to logic HIGH, the device resets all blocks to locked and defaults to the read array mode.
E3	F_WP#	Input	Flash Write Protect. Controls the lock down function of the flexible locking feature.
G10	S_CE1#	Input	SRAM Chip Enable1: Activates the SRAM when it is LOW. HIGH level deselects the SRAM and reduces the power consumption to standby levels.
D8	S_CE2	Input	SRAM Chip Enable2: Activates the SRAM when it is HIGH. LOW level deselects the SRAM and reduces the power consumption to standby levels.
F5	S_OE#	Input	SRAM Output Enable: Enables SRAM output buffers when LOW. When S_OE# is HIGH, the output buffers are disabled.
B8	S_WE#	Input	SRAM Write Enable: Determines if a given cycle is an SRAM WRITE cycle. S_WE# is active LOW.
F3	S_LB#	Input	SRAM Lower Byte: When LOW, it selects the SRAM address lower byte (DQ0-DQ7).
F4	S_UB#	Input	SRAM Upper Byte: When LOW, it selects the SRAM address upper byte (DQ8-DQ15).
B7, B9, B10, C7, C8, C9, C10, D7, E6, E8, E9, E10, F7, F8, F9, F10	DQ0-DQ15	Input/ Output	Data Inputs/Outputs: Input array data on the second CE# and WE# cycle during PROGRAM command. Input commands to the command user interface when CE# and WE# are active. Output data when CE# and OE# are active.

(continued on next page)

BALL DESCRIPTIONS (continued)

66-BALLFBGA NUMBERS	SYMBOL	TYPE	DESCRIPTION
E4	F_VPP	Input/ Supply	Flash Program/Erase Power Supply: [1.65V–3.3V or 11.4V–12.6V]. Operates as input at logic levels to control complete device protection. Provides backward compatibility for factory programming when driven to 11.4V–12.6V. Lower F_VPP voltages are available; consult factory for availability.
D10	F_Vcc	Supply	Flash Power Supply: [2.7V–3.3V]. Supplies power for device operation.
A9, H8	F_Vss	Supply	Flash Specific Ground: Do not float any ground pin.
D9	S_Vcc	Supply	SRAM Power Supply: [2.7V–3.3V]. Supplies power for device operation.
D3	S_Vss	Supply	SRAM Specific Ground: Do not float any ground pin.
A1, A2, A3, A10, A11, A12, C4, H1, H2, H3, H10, H11, H12	NC	_	No Connect: Lead is not internally connected; it may be driven or floated.

TRUTH TABLE - FLASH

	F	LASHS	IGNAL	S		;	SRAMS	IGNALS	3		MEMORY		
MODES	F_RP#	F_CE#	F_OE#	F_WE#	S_CE1#S	S_CE2 S_OE# S_WE# S_UB# S_LB#					MEMORY BUS CONTROL	DQ0-DQ15	NOTES
Read	Н	L	L	Н	SRAM must be High-Z					Flash	D оит	1, 2, 3	
Write	Н	L	Н	L							Flash	Din	1
Standby	Н	Н	Х	Х						Other	High-Z	4, 5	
Output Disable	Н	L	Н	Н	SRAM any mode allowable					Other	High-Z	4, 6	
Reset	L	Х	Х	Х] .						Other	High-Z	4, 7

TRUTH TABLE - SRAM

	F	FLASHSIGNALS				;	SRAMS	IGNALS	3		MEMOR	YOUPUT	
MODES	F_RP#	F_CE#	F_OE#	F_WE#	S_CE1#	S_CE2	S_OE#	S_WE#	S_UB#	S_LB#	MEMORY BUSCONTROL	DQ0-DQ15	NOTES
Read													
DQ0-DQ15					L	Н	L	Н	L	L	SRAM	Dоит	1, 3
DQ0-DQ7						Н	L	Н	Н	L	SRAM	DouтLB	8
DQ8-DQ15	Flash must be High-Z				L	Н	L	Н	L	Н	SRAM	Dout UB	9
Write													
DQ0-DQ15					L	Н	Н	L	L	L	SRAM	Din	1, 3
DQ0-DQ7					L	Н	Н	L	Н	L	SRAM	Din LB	10
DQ8-DQ15					L	Ι	Н	L	L	Н	SRAM	Dın UB	11
Standby					Н	X	Х	Х	Х	Х	Other	High-Z	4, 5
	Plash any mode allowable Output Disable		wable	Х	L	Х	Х	Х	X	Other	High-Z	4, 5	
Output Disable			L	Н	Н	Н	Х	Х	Other	High-Z	4, 5		
Data Retention							Same as	standb	у		Other	High-Z	4, 6

- NOTES: 1. Two devices may not drive the memory bus at the same time.
 - 2. Allowable flash read modes include read array, read configuration, and read status.
 - 3. Outputs are dependent on a separate device controlling bus outputs.
 - 4. Modes of the Flash and SRAM can be interleaved so that while one is disabled, the other controls outputs.
 - 5. The SRAM may be placed into data retention mode by lowering S_Vcc to the VDR range, as specified.
 - 6. SRAM is enabled and/or disabled with the logical function: S_CE1# or S_CE2.
 - 7. Simultaneous operations can exist, as long as the operations are interleaved such that only one device attempts to control the bus outputs at a time.
 - 8. Data output on lower byte only; upper byte High-Z.
 - 9. Data output on upper byte only; lower byte High-Z.
 - 10. Data input on lower byte only.
 - 11. Data input on upper byte only.

FLASH

ARCHITECTURE AND MEMORY ORGANIZATION

The Flash memory array is segmented into 31 blocks of 32K words, along with eight 4K-word parameter blocks. The device is available with block architecture mapped in either of the two configurations: the parameter blocks located at the top or at the bottom of the memory array, as required by different microprocessors. The N02C1630E1AM top boot configuration with the blocks and address ranges is shown in Figure 1 and the bottom boot configuration in Figure 2.

FFFFFH

FF000H

FEFFFH

FE000H

FDFFFH

FD000H

FCFFFH

FC000H

FBFFFH

FB000H

FAFFFH

FA000H

F9FFFH

F9000H

F8FFFH

F8000H

ADDRESS RANGE

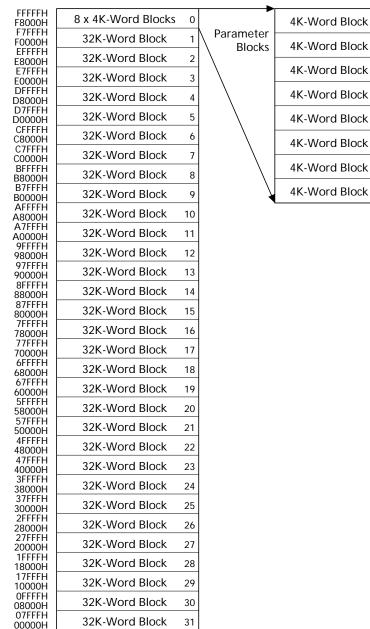


Figure 1
Top Boot Block Device

ADDRESS RANGE

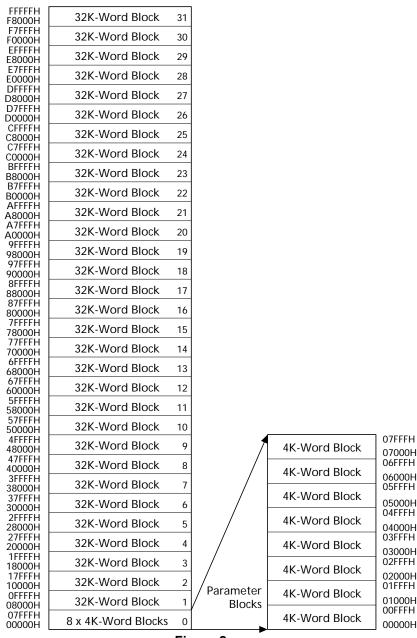


Figure 2
Bottom Boot Block Device

FLASH MEMORY OPERATING MODES COMMAND STATE MACHINE

Commands are issued to the command state machine (CSM) using standard microprocessor write timings. The CSM acts as an interface between external microprocessors and the internal write state machine (WSM). The available commands are listed in Table 2, their definitions are given in Table 3 and their descriptions in Table 4. Program and erase algorithms are automated by the on-chip WSM. Table 5 shows the CSM transition states. Once a valid PROGRAM/ERASE command is entered, the WSM executes the appropriate algorithm, which generates the necessary timing signals to control the device internally. A command is valid only if the exact sequence of WRITEs is completed. After the WSM completes its task, the write state machine status (WSMS) bit (SR7) (see Table 7) is set to a logic HIGH level (VIH), allowing the CSM to respond to the full command set again.

OPERATIONS

Device operations are selected by entering a standard JEDEC 8-bit command code with conventional microprocessor timings into an on-chip CSM through I/O pins DQ0–DQ7. The number of bus cycles required to activate a command is typically one or two. The first operation is always a WRITE. Control pins F_CE# and F_WE# must be at a logic LOW level (VIL), and F_OE# and F_RP# must be at logic HIGH (VIH). The second operation, when needed, can be a WRITE or a READ depending upon the command. During a READ operation, control pins F_CE# and F_OE# must be at a logic LOW level (VIL), and F_WE# and F_RP# must be at logic HIGH (VIH).

Table 6 illustrates the bus operations for all the modes: write, read, reset, standby, and output disable.

When the device is powered up, internal reset circuitry initializes the chip to a read array mode of operation. Changing the mode of operation requires that a command code be entered into the CSM. The on-chip status register allows the monitoring of the progress of various operations that can take place. The status register is interrogated by entering a READ STATUS REGISTER command onto the CSM (cycle 1) and reading the register data on I/O pins DQ0–DQ7 (cycle 2). Status register bits SR0-SR7 correspond to DQ0–DQ7 (see Table 7).

COMMAND DEFINITION

Once a specific command code has been entered, the WSM executes an internal algorithm, generating the necessary timing signals to program, erase, and verify data. See Table 3 for the CSM command definitions and data for each of the bus cycles.

STATUS REGISTER

The status register allows the user to determine whether the state of a PROGRAM/ERASE operation is pending or complete. The status register is monitored toggling F_OE#, F_CE#, and address lines by reading the resulting status code on I/O pins DQ0–DQ7. The high-order I/Os (DQ8–DQ15) are set to 00h internally, so only the low-order I/O pins (DQ0–DQ7) need to be interpreted. Address lines select the status register pertinent to the selected memory partition.

Register data is updated on the falling edge of F_OE# or F_CE#, whichever occurs first. The latest falling edge of either of these two signals updates the latch within a

Table 2
Command State Machine Codes For Device Mode Selection

COMMAND DQ0-DQ7	CODE ON DEVICE MODE					
10h/40h	Program setup/alternate program setup					
20h	Block erase setup					
50h	Clear status register					
60h	Reserved					
70h	Read status register					
90h	Read device identity					
0Fh	Soft protection					
B0h	Program/erase suspend					
D0h	Program/erase resume - erase confirm					
FFh	Read array/OTP exit					
AFh	OTP entry					

given READ cycle. Latching the data prevents errors from occurring if the register input changes during a status register read. To ensure that the status register output contains updated status data, CE#or OE#must be toggled for each subsequent STATUS READ.

The status register provides the internal state of the WSM to the external microprocessor. During periods when the WSM is active, the status register can be polled to determine the WSM status. Table 7 defines the status register bits.

After monitoring the status register during a PROGRAM/ERASE operation, the data appearing on DQ0–DQ7 remains as status register data until a new command is issued to the CSM. To return the device to other modes of operation, a new command must be issued to the CSM.

COMMAND STATE MACHINE OPERATIONS

The CSM decodes instructions for the commands

listed in Table 2. The 8-bit command code is input to the device on DQ0–DQ7 (see Table 3 for command definitions). During a PROGRAM or ERASE cycle, the CSM informs the WSM that a PROGRAM or ERASE cycle has been requested.

During a PROGRAM cycle, the WSM controls the program sequences and the CSM responds to a PRO-GRAM SUSPEND command only.

During an ERASE cycle, the CSM responds to an ERASE SUSPEND command only. When the WSM has completed its task, the WSMS bit (SR7) is set to a logic HIGH level and the CSM responds to the full command set. The CSM stays in the current command state until the microprocessor issues another command.

The WSM successfully initiates an ERASE or PRO-GRAM operation only when VPP is within its correct voltage range.

Table 3
Command Definitions

		FIRST CYCLE		S	ECOND CYCLE	
COMMAND	OPERATION ADDRES		CSM/INPUT	OPERATION	ADDRESS	DATA
READ ARRAY	WRITE	Х	FFh	READ	WA	AD
IDENTIFYDEVICE	WRITE	X	90h	READ	IA	D
READSTATUS REGISTER	WRITE	Х	70h	READ	ВА	SRD
WORDPROGRAM	WRITE	X	10h/40h	WRITE	WA	PD
BLOCKERASE	WRITE	X	20h	WRITE	BA	D0h
PROGRAM/ERASE SUSPEND	WRITE	Х	B0h			
PROGRAM/ERASERESUME	WRITE	X	D0h			
CLEARSTATUSREGISTER	WRITE	X	50h			
SOFTPROTECTION	WRITE	Х	0Fh	WRITE	ВА	SPC
OTPENTRY	WRITE	Х	AFh	WRITE	X	AFh
OTPEXIT	WRITE	Х	FFh	WRITE	Х	FFh

NOTE: 1. The command data is written through DQ0-DQ7

- 2. ID = Manufacturer ID: 002Ch; Device ID (Top Boot): 4492h; Device ID (Bottom Boot): 4493h
- 3. IA = Identify address: 00000h for manufacturer code and 00001h for device code
- 4. BA = Any address within the block to be selected
- 5. WA = Word address
- 6. AD = Array data
- 7. SRD = Data read from status register
- 8. PD = Data to be written at location WA
- 9. SPC = Soft protect command:

00h = Clear all soft protection

FFh = Set all soft protection

F0h = Clear addressed block soft protection

0Fh = Set addressed block soft protection

10. X = Don't Care

Table 4 Command Descriptions

CODE	DEVICEMODE	BUSCYCLE	DESCRIPTION
10h	Alt. Program Setup	First	Operates the same as a PROGRAM SETUP command.
20h	Erase Setup	First	Prepares the CSM for an ERASE CONFIRM command. If the next command is not ERASE CONFIRM, the CSM will set both SR4 and SR5 of the status register to a "1," place the device into read status register mode, and wait for another command.
40h	Program Setup	First	A two-cycle command: The first cycle prepares for a PROGRAM operation, the second cycle latches addresses and data and initiates the WSM to execute the program algorithm. The flash outputs status register data on the falling edge of F_OE# or F_CE#, whichever occurs first.
50h	Clear Status Register	First	The WSM can set the program status (SR4), and erase status (SR5) bits in the status register to "1," but it cannot clear them to "0." Issuing this command clears those bits to "0."
70h	Read Status Register	First	Places the device into read status register mode. Reading the device will output the contents of the status register, regardless of the address presented to the device. The device will automatically enter this mode after a PROGRAM or ERASE operation has been initiated.
90h	Read Device Identity	First	Puts the device into the read configuration mode so that reading the device will output the manufacturer/device codes.
0Fh	Soft Protection	First	Puts the device into the soft protection mode so that the protection bit for each block can be set and cleared.
B0h	Program Suspend Erase Suspend	First First	Suspends the currently executing PROGRAM/ERASE operation. The status register will indicate when the operation has been successfully suspended by setting either the program suspend (SR2) or erase suspend (SR6) and the WSMS bit (SR7) to a "1" (ready). The WSM will continue to idle in the suspend state, regardless of the state of all input control pins except F_RP#, which will immediately shut down the WSM and the remainder of the chip if F_RP# is driven to VIL.
D0h	Erase Confirm	First	If the previous command was an ERASE SETUP command, then the CSM will close the address and data latches, and it will begin erasing the block indicated on the address pins. During programming/erase, the device will respond only to the ERASE SUSPEND command and will output status register data on the falling edge of F_OE# or F_CE#, whichever occurs last.
	Program/Erase Resume	First	If a PROGRAM or ERASE operation was previously suspended, this command will resume the operation.
FFh	Read Array	First	During the array mode, array data will be output on the data bus.
AFh	OTP Entry	Second Second	Exits the OTP area on second FFh command. Allows programming or reading of the OTP area on second AFh command.

CLEAR STATUS REGISTER

The internal circuitry can set, but not clear, the block lock status bit (SR1), the VPP status bit (SR3), the program status bit (SR4), and the erase status bit (SR5) of the status register. The CLEAR STATUS REGISTER command (50h) allows the external microprocessor to clear these status bits and synchronize to the internal operations. When the status bits are cleared, the device returns to the read array mode.

READ OPERATIONS

The following READ operations are available: READ ARRAY, READ DEVICE IDENTIFICATION and READ STATUS REGISTER.

READ ARRAY

The array is read by entering the command code FFh on DQ0–DQ7. Control pins F_CE# and F_OE# must be at a logic LOW level ($V_{\rm IL}$), and F_WE# and F_RP# must be at a logic HIGH level ($V_{\rm IH}$) to read data from the array. Data is available on DQ0–DQ15. Any valid address within any of the blocks selects that address and allows data to be read from that address. Upon initial power-up, the device defaults to the read array mode.

READ DEVICE IDENTIFICATION DATA

Device identification codes are read by entering command code 90h on DQ0-DQ7. Two bus cycles are required for this operation, the first to enter the command code and the second to read the selected code. Control pins CE# and OE# must be at a logic LOW level (VIL) and WE# and RP# must be at a logic HIGH level (VIH). The manufacturer code is obtained on DQ0-DQ15 in the second cycle, after the identify address 00000h is latched. The device code is obtained on DQ0-DQ15 in the second cycle, after the identify address 00001h is latched (see Table 3).

READ STATUS REGISTER

The status register is read by entering the command code 70h on DQ0-DQ7. Control pins F_CE# and F_OE# must be at a logic LOW level ($V_{\rm IL}$), andF_WE# and F_RP# must be at a logic HIGH level ($V_{\rm IH}$). Two bus cycles are required for this operation: one to enter the command code, and one to read the status register. The status register contents are updated on the falling edge of F_CE# or F_OE#, whichever occurs last within the cycle.

PROGRAMMING OPERATIONS

There are two CSM commands for programming: PROGRAM SETUP and ALTERNATE PROGRAM SETUP (see Table 2)

After the desired command code is entered (10h or 40h

command code on DQ0-DQ7), the WSM takes over and correctly sequences the device to complete the PRO-GRAM operation. The WRITE operation may be monitored through the status register (see the Status Register section). During this time, the CSM will only respond to a PROGRAM SUSPEND command until the PROGRAM operation has been completed, after which time all commands to the CSM become valid again. During programmina. V_{PP} must remain appropriate VPP voltage range as shown in the recommended operating conditions table. Different combinations of RP#, WP#, and VPP pin voltage levels ensure that data in certain blocks are secure and therefore cannot be programmed (see Table 5 for a list of combinations). Only "0s" are written and compared during a PROGRAM operation. If "1s" are programmed, the memory cell contents do not change and no error occurs. The PROGRAM operation can be suspended by issuing a PROGRAM SUSPEND command (B0h). Once the WSM reaches the suspend state, it allows the CSM to respond only to READ ARRAY. READ STATUS REGISTER or PROGRAM RESUME commands. During the PROGRAM SUSPEND operation, array data should be read from an address other than the one being programmed. To resume the PROGRAM operation, a PROGRAM RESUME command (D0h) must be issued to cause the CSM to clear the suspend state previously set (see Figure 3 for programming operation and Figure 4 for program suspend and program resume).

ERASE OPERATIONS

An ERASE operation must be used to initialize all bits in an array block to "1s." After BLOCK ERASE confirm is issued, the CSM responds only to an ERASE SUSPEND command until the WSM completes its task.

Block erasure inside the memory array sets all bits within the address block to logic 1s. Erase is accomplished only by blocks; data at single address locations within the array cannot be erased individually. The block to be erased is selected by using any valid address within that block. Block erasure is initiated by a command sequence to the CSM: BLOCK ERASE setup (20h) followed by BLOCK ERASE CONFIRM (D0h) (see Table 3). A two-command erase sequence protects against accidental erasure of memory contents.

When the BLOCK ERASE CONFIRM command is complete, the WSM automatically executes a sequence of events to complete the block erasure. During this sequence, the block is programmed with logic 0s, data is verified, all bits in the block are erased, and finally verification is performed to ensure that all bits are correctly erased. Monitoring of the ERASE operation is possible through the status register (see the Status

Table 5 Command State Machine Transition Table

	COMMAND INPUTS (and next state))					
Current State	SR7	Data when Read	Read Array (FFh)	Write setup (10h/ 40h)	Block erase setup (20h)	Erase confirm (D0h)	Prog./ erase susp. (B0h)	Prog./ erase resume (D0h)	Read SR (70h)	Clear SR (50h)	Identify device (90h)	Soft prot. setup (0Fh)	Soft prot. (SPC)	Otp entry (AFh)
Read Array	1	Array	Read array	Write setup	Erase setup	Read array			Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ read array	Otp entry
Read Status	1	Status	Read array	Write setup	Erase setup	Read array			Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ read array	Otp entry
Identify Device	1	ID	Read array	Write setup	Erase setup	Read array			Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ read array	Otp entry
Soft Prot. Setup	1	Status	Soft prot. all			F	Read arra	y				Soft prot. block	Soft prot.	Read array
Soft Protection Complete	1	Status	Read array	Write setup	Erase setup	Read array			Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ read array	Otp entry
Write Setup	1	Status	Program											
Program Not Complete	0	Status		Prog (not co	gram mplete)		Prog. susp. status		Program (not complete)					
Program Suspend Status	1	Status	Program susp. read array		suspend array	Program	Program susp. read array	Program	Program susp. status		Program suspend read array			
Program Suspend Read Array	1	Array	Program susp. read array		suspend array	Program	Program susp. read array	Program	Program susp. status		Program	n suspend	read array	/
Program Complete	1	Status	Read Array	Write setup	Erase setup	F	Read array	/	Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ read array	Otp entry
Erase Setup	1	Status	Erase	comman	d error	Erase	Erase	Erase			Erase cor	mmand er	ror	
Erase Comd. Error	1	Status	Read array	Write setup	Erase setup	F	Read arra	4	Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ Read array	Otp entry
Erase Not Complete	0	Status	E	rase (not	complete	:)	Erase susp. to status			Erase	e (not com	plete)		
Erase Suspend Status	1	Status	Erase susp. read array	Write setup	Erase susp. read array	Erase	Erase susp. read array	Erase	Erase susp. status		Erase	suspend r	ead array	
Erase Suspend Array	1	Array	Erase susp. read array	Write setup	Erase susp. read array	Erase	Erase susp. read array	Erase	Erase susp. status		Erase	suspend r	ead array	
Erase Complete	1	Status	Read array	Write setup	Erase setup	F	Read arra	<i>y</i>	Read status	Read array	Identify device	Soft prot. setup	Soft prot. setup/ read array	Otp entry

Register section).

During the execution of an ERASE operation, the ERASE SUSPEND command (B0h) can be entered to direct the WSM to suspend the ERASE operation. Once the WSM has reached the suspend state, it allows the CSM to respond only to the READ ARRAY, READ STATUS REGISTER, PROGRAMSETUP, PROGRAMRESUME and ERASE RESUME. During the ERASE SUSPEND operation, array data must be read from a block other than the one being erased. To resume the ERASE operation, an ERASE RESUME command (D0h) must be issued to cause the CSM to clear the suspend state previously set (see Figure 6). It is also possible that an ERASE in any block can be suspended and a WRITE to another block can be initiated. After the completion of a WRITE, the ERASE can be resumed by writing an ERASE RESUME command.

Table 6
Bus Operations

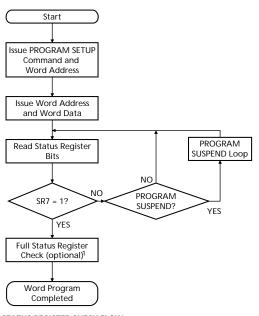
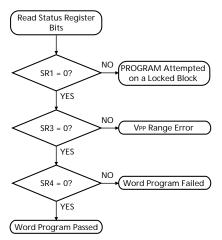

MODE	F_RP#	F_CE#	F_OE#	F_WE#	ADDRESS	DQ0-DQ15
Read (array, status register, device identification register)	Vih	VIL	VIL	Vih	Х	Dоит
Standby	ViH	VIH	X	X	X	High-Z
Output Disable	ViH	VIL	VIH	ViH	X	High-Z
Reset	VIL	Χ	Χ	Х	Х	High-Z
Write	ViH	VIL	ViH	VIL	Х	DIN

Table 7
Status Register Bit Definition

WSMS	WSMS ESS		PS	VPPS	PSS	BLS	R
7	6	5	4	3	2	1	0

STATUS		
BIT #	STATUS REGISTER BIT	DESCRIPTION
SR7	WRITESTATEMACHINESTATUS(WSMS) 1 = Ready 0 = Busy	Check write state machine bit first to determine word program or block erase completion, before checking program or erase status bits.
SR6	ERASE SUSPEND STATUS (ESS) 1 = BLOCK ERASE Suspended 0 = BLOCK ERASE in Progress/Completed	When ERASE SUSPEND is issued, WSM halts execution and sets both WSMS and ESS bits to "1." ESS bit remains set to "1" until an ERASE RESUME command is issued.
SR5	ERASE STATUS (ES) 1 = Error in Block Erasure 0 = Successful BLOCK ERASE	When this bit is set to "1," WSM has applied the maximum number of erase pulses to the block and is still unable to verify successful block erasure.
SR4	PROGRAM STATUS (PS) 1 = Error in PROGRAM 0 = Successful PROGRAM	When this bit is set to "1," WSM has attempted but failed to program a word.
SR3	VPP STATUS (VPPS) 1 = VPP Low Detect, Operation Abort 0 = VPP = OK	The VPP status bit does not provide continuous indication of the VPP level. The WSM interrogates the VPP level only after the program or erase command sequences have been entered and informs the system if VPP has not been switched on. The VPP level is also checked before the PROGRAM/ERASE operation is verified by the WSM.
SR2	PROGRAM SUSPEND STATUS (PSS) 1 = PROGRAM Suspended 0 = PROGRAM in Progress/Completed	When PROGRAM SUSPEND is issued, WSM halts execution and sets both WSM and PSS bits to "1." PSS bit remains set to "1" until a PROGRAM RESUME command is issued.
SR1	BLOCK LOCK STATUS (BLS) 1 = PROGRAM/ERASE Attempted on a Locked Block; Operation Aborted 0 = No Operation to Locked Blocks	If a PROGRAM or ERASE operation is attempted to one of the locked blocks, this is set by the WSM. The operation specified is aborted and the device is returned to read status mode.
SR0	RESERVED FOR FUTURE ENHANCEMENT	This bit is reserved for future.


Figure 3 **Automated Word Programming Flowchart**

BUS OPERATION	COMMAND	СОММЕ	ENTS	
WRITE	WRITE PROGRAM SETUP		40h or 10h Don't care	
WRITE	WRITE DATA		Word to be programmed Address of word to be programmed	
READ		Status register data; toggle OE# or CE# to update status register.		
Standby		CheckSR7 1 = Ready, 0 = Busy		

Repeat for subsequent words. Write FFh after the last word programming operation to reset the device to read array mode.


FULL STATUS REGISTER CHECK FLOW

BUS OPERATION	COMMAND	COMMENTS
Standby		CheckSR1 1 = Detect locked block
Standby		Check SR3 ² 1 = Detect V _{PP} low
Standby		CheckSR4 ³ 1 = Word program error

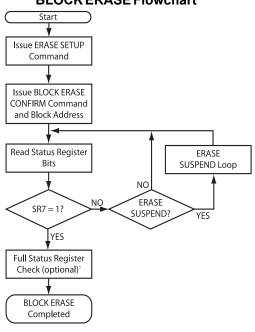
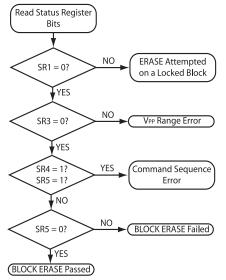

- NOTE: 1. Full status register check can be done after each word or after a sequence of words.
 - 2. SR3 must be cleared before attempting additional PROGRAM/ERASE operations.
 - 3. SR4 is cleared only by the CLEAR STATUS REGISTER command, but it does not prevent additional program operation attempts.

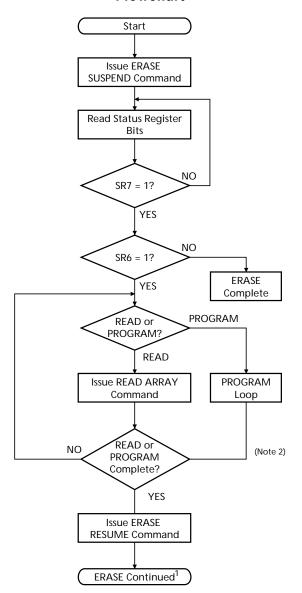
Figure 4
PROGRAM SUSPEND/
PROGRAM RESUME Flowchart

BUS OPERATION	COMMAND	COMMENTS
WRITE	PROGRAM SUSPEND	Data = B0h
READ		Status register data; toggle OE# or CE# to update status register.
Standby		CheckSR7 1 = Ready
Standby		CheckSR2 1 = Suspended
WRITE	READ MEMORY	Data = FFh
READ		Read data from block other than that being programmed.
WRITE	PROGRAM RESUME	Data = D0h Addr = Don't care


Figure 5
BLOCK ERASE Flowchart

BUS OPERATION	COMMAND	COMMENTS
WRITE	WRITE ERASE SETUP	Data = 20h Addr = Don't care
WRITE	ERASE	Data = D0h Block Addr = Address within block to be erased
READ		Status register data; toggle OE# or CE# to update status register.
Standby		Check SR7 1 = Ready, 0 = Busy

Repeat for subsequent blocks. Write FFh after the last BLOCK ERASE operation to reset the device to read array mode.


FULL STATUS REGISTER CHECK FLOW

BUS OPERATION	COMMAND	COMMENTS
Standby		Check SR1 1 = Detect locked block
Standby		Check SR3 ² 1 = Detect V _{PP} block
Standby		Check SR4 and SR5 1 = BLOCKERASE command error
Standby		Check SR5 ³ 1 = BLOCK ERASE error

- NOTE: 1. Full status register check can be done after each block or after a sequence of blocks.
 - 2. SR3 must be cleared before attempting additional PROGRAM/ERASE operations.
 - SR5 is cleared only by the CLEAR STATUS REGISTER command in cases where multiple blocks are erased before full status is checked.

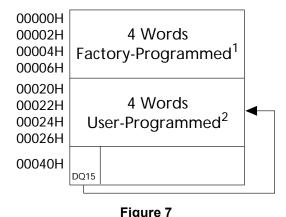
Figure 6
ERASE SUSPEND/ERASE RESUME
Flowchart

BUS OPERATION	COMMAND	COMMENTS
WRITE	ERASE SUSPEND	Data = B0h
READ		Status register data Toggle OE# or CE# to update status register
Standby		Check SR7 1 = Ready
Standby		Check SR6 1 = Suspended
WRITE	READ MEMORY	Data = FFh
or WRITE	WRITE SETUP	Data = 40h or 10h Addr = Don't Care
READ		Read data from block other than that being erased
or WRITE	WRITE DATA	Data = Word to be programmed Addr = Address of word to be programmed
WRITE	ERASE RESUME	Data = D0h Addr = Don't Care

NOTE: 1. See BLOCK ERASE Flowchart for complete erasure procedure.

2. See Word Programming Flowchart for complete programming procedure.

Stock No. 23134-C 11/01


OTP MODE

The device has 128 bits of OTP (one time programmable) area. There are 64 bits that are programmed at the factory with a unique 64-bit code that is not modifiable. The other 64-bit OTP area is left blank to program for customer design requirements if needed. Protection of the user-programmable, 64-bit contents is provided, after the area is programmed, by programming the lock-bit.

To program the OTP area, two "AFh" commands must be written, followed by two WRITE cycles of the normal program sequences. When in the OTP mode, the WSM programs the OTP area and not the array. During programming, a read can acquire only the WSM status (status register output). When the programming is complete, the device remains in the OTP mode and only the status can be read in the OTP area. Writing two "FFh" commands exits the OTP mode and causes the device to go into the read array mode. To read the OTP area after programming, the OTP mode must be re-entered.

To read the OTP area contents, two "AFh" commands must be written, followed by a READ. Writing two "FFh" commands exits the OTP mode and causes the device to go into the read array mode.

After programming the 64-bit OTP area, the lock-bit can be programmed. The lock-bit is at address 00040H and is on DQ15. Once the lock-bit is programmed to a "0," the 64-bit, user-programmable area is permanently protected (see Figure 7). The lock- bit can be read in OTP mode, as described above

NOTE: 1. Always locked.

2. Locked by programming DQ15 at address 00040H.

OTP Area Map

STANDBY MODE

Icc supply current is reduced by applying a logic HIGH level on F_CE# and F_RP# to enter the standby mode. In the standby mode, the outputs are placed in High-Z. Applying a CMOS logic HIGH level on F_CE# and F_RP# reduces the current to Icc2 (MAX). If the device is deselected during an ERASE operation or during programming, the device continues to draw current until the operation is complete.

SOFT BLOCK DATA PROTECTION

Soft protection is available with CSM command 0Fh (see Table 3). The protection bit for each block can be set and cleared individually, or all at once. After the soft protection bit of a block is set, the block is protected when VPP > VPPLK, RP# is HIGH, and WP# is LOW. When VPP \leq VPPLK the block is protected (locked) as well. A block is unlocked when WP# is HIGH, even if its soft protection bit is set (see Table 8)..

When the device is powered down or RP# reset, the soft protection blocks will be set to the protected state. So, if WP# goes LOW after first power-up, RP# reset, or power-down, all blocks will be protected. The CSM command 0Fh is needed to clear the soft protected blocks. When WP# goes LOW the cleared blocks will be unprotected.

The block lock status bit SR1 is used to monitor the individual block lock status after the second WRITE cycle of the soft protection CSM command. Additionally, to monitor the block lock status of any block, the read status register command 70h can be used. On the command's second cycle, any address within a block is issued and SR1 will indicate the block lock status for that block. When monitoring the block lock status bit SR1, the correct status can only be obtained with WP# LOW.

AUTOMATIC POWER SAVE MODE (APS)

Substantial power savings are realized during periods when the Flash array is not being read and the device is in the active mode. During this time the device switches to the automatic power save (APS) mode. When the device switches to this mode, Icc is reduced to Icc2. The low level of power is maintained until another operation is initiated. In this mode, the I/O pins retain the data from the last memory address read until a new address is read. This mode is entered automatically if no address or control pins toggle. At least one transition of F_CE# must occur after power-up to activate this mode's availability.

Table 8

Data Protection Combinations

DATA PROTECTION PROVIDED	VPP	RP#	WP#
All blocks locked	≤ Vpplk	Χ	Х
All blocks locked	X	VIL	X
All blocks unlocked	≥V _{PPLK}	Vıн	VIH
Soft-protected blocks unlocked	≥V _{PPLK}	ViH	VıL

VPP / Vcc PROGRAM AND ERASE VOLTAGES

The flash memory of the N02C1630E1AM provides insystem programming and erase with VPP in the 1.65V-3.3V range. VPP at $12V\pm5\%$ is supported for a maximum of 100 cycles and 10 cumulative hours. The device can withstand 100,000 WRITE/ERASE operations with VPP = Vcc. During WRITE and ERASE operations, the WSM monitors the VPP voltage level. WRITE/ERASE operations are allowed only when VPP is within the ranges specified in Table 9.

Table 9 VPP RANGE (V)

	MIN	MAX
In-System	1.65	2.2
In-Factory	11.4	12.6

POWER-UP

During a power-up, it is not necessary to sequence Vcc Q, Vcc and Vpp. However, it is recommended that RP# be held LOW during power-up for additional protection while Vcc is ramping above VLKo to a stable operative level. After a power-up or RESET, the status register is reset, and the device will enter the array read mode.

POWER-UP PROTECTION

The likelihood of unwanted WRITE or ERASE operations is minimized since two consecutive cycles are required to execute either operation. When Vcc < VLKO, the device does not accept any WRITE cycles, and noise pulses < 5ns on CE# or WE# do not initiate a WRITE cycle.

FLASH ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

Voltage to Any Pin Except Vcc and VPP
with Respect to Vss0.5V to +4.0V
VPP Voltage (for BLOCK ERASE and PROGRAM)
with Respect to Vss0.5V to +13.0V**
Vcc Supply Voltage
with Respect to Vss0.3V to +4.0V
Output Short Circuit Current 100mA
Operating Temperature Range40°C to +85°C
Storage Temperature Range55°C to +125°C
Soldering Cycle

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum DC voltage on Vpp may overshoot to +13.5V for periods less than 20ns.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Operating temperature	^t A	-40	+85	°C	
Vcc supply voltage	F_Vcc, S_Vcc	2.7	3.3	V	
Supply voltage, when used as logic control	VPP1	1.65	3.3	V	
VPP in-factory programming voltage	VPP2	11.4	12.6	V	1
Data retention supply voltage	S_VDR	1.0	_	V	
Block erase cycling		100,000	_	Cycles	

NOTE: 1. 12V VPP is supported for a maximum of 100 cycles and may be connected for up to 10 cumulative hours.

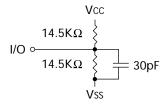


Figure 8
Output Load Circuit

COMBINED DC CHARACTERISTICS

			Vcc =	2.7V-3	.3V		
DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Low Voltage		VIL	-0.2	_	0.2	V	
Input High Voltage		VIH	Vcc - 0.2V	_	V _{CC} + 0.2V	V	
Output Low Voltage	Vcc = Vcc (MIN),	Vol	_	-	0.10	٧	
Output High Voltage	Vcc=Vcc(MIN),	Vон 0.1V	Vcc -	_	-	٧	
VPP Lock Out Voltage		VPPLK	_	_	1.0	V	
VPP During Program/Erase		V _{PP1}	1.65	_	3.3	V	
Operations		VPP2	11.4	_	12.6	V	2
Vcc Program/Erase Lock Voltage		VLKO	1.5	_	_	V	
Input Leakage Current	Vcc=Vcc(MAX)	L	_	_	1	μΑ	
Output Leakage Current	Vcc=Vcc(MAX)	loz	_	_	10	μΑ	
F_Vcc Read Current at 5MHz	Vcc=Vcc(MAX) CE#=Vil,OE#=VihRP#=Vih	lcc1	_	_	30	mA	3
F_Vcc plus S_Vcc Standby Current	Vcc=Vcc(MAX)	lcc3	_	25	70	μΑ	
F_Vcc Program Current		ICC4+IPP3	_	_	55	m A	
F_Vcc Erase Current		ICC5+IPP4	_	_	45	mA	
F_Vcc/S_Vcc Erase Suspend Curre	nt	lcc6	_	_	25	μΑ	
F_Vcc/S_Vcc Program Suspend Current		lcc7	_	_	25	μΑ	
Read-While-Write Current		lcc8	_	_	95	mA	
S_Vcc Read/Write Operating Supply Current – Word Access Mode	$V_{IN} = V_{IH}$ or V_{IL} Chip Enabled, $I_{OL} = 0$	lcc10	_	3	8	mA	4

NOTE: 1. All currents are in RMS unless otherwise noted.

- 2. 12V VPP is supported for a maximum of 100 cycles and may be connected for up to 10 cumulative hours.
- 3. Icc is dependent on cycle rates.
- 4. Operating current is a linear function of operating frequency and voltage. Operating current can be calculated using the formula shown with operating frequency (f) expressed in MHz and operating voltage (V) in volts. Example: When operating at 2 MHz at 2V, the device will draw a typical active current of 0.8*2* = 3.2mA in the page access mode. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

(continued on the next page)

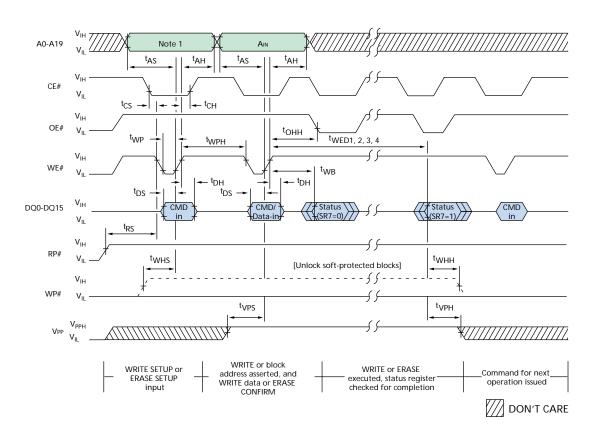
COMBINED DC CHARACTERISTICS (continued)

			Vcc = 2.7V-3.3V				
DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
VPP Read Current	VPP ≤ VCC	IPP1	_	_	15	μΑ	
	Vpp≥Vcc		ı	_	200	μΑ	
VPP Standby Current	V _{PP} ≤ V _{CC}	IPP2	-	_	10	μΑ	
	Vpp≥Vcc		-	_	200	μΑ	
VPP Erase Suspend Current	VPP = VPP1	IPP5	ı	_	10	μΑ	
	VPP=VPP2		_	_	200	μΑ	
VPP Program Suspend Current	VPP = VPP1	IPP6	ı	_	10	μΑ	
	Vpp=Vpp2		-	-	200	μΑ	

NOTE: 1. All currents are in RMS unless otherwise noted.

FLASH READ CYCLE TIMING REQUIREMENTS

		-90 Vcc = 2.7V-3.3V			
PARAMETER	SYMBOL	MIN	MAX		UNITS
Address to output delay	t _{AA}		90		ns
CE# LOW to output delay	^t ACE		90		ns
OE# LOW to output delay	^t AOE		30		ns
F_RP# HIGH to output delay	^t RWH		600		ns
CE# or OE# HIGH to output High-Z	^t OD		25		ns
Output hold from address, CE# or OE# change	^t OH	0			ns
CE# HIGH between subsequent synchronous READs	^t CBPH	20			ns
READ Cycle Time	tRC	90			ns

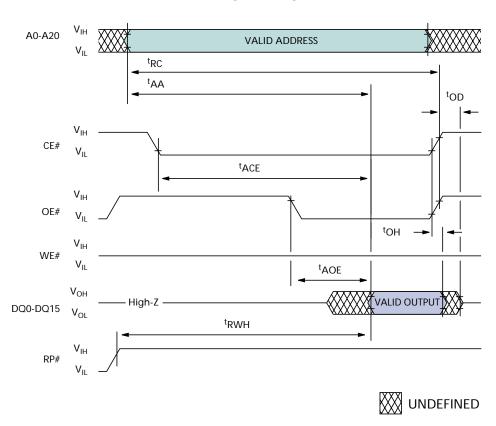

FLASH WRITE CYCLE TIMING REQUIREMENTS

			-90	
		Vcc = 2	.7V-3.3V	1
PARAMETER	SYMBOL	MIN	MAX	UNITS
Reset HIGH recovery to WE# going LOW	^t RS	150		ns
CE# setup to WE# going LOW	^t CS	0		ns
Write pulse width	^t WP	70		ns
Data setup to WE# going HIGH	t _{DS}	50		ns
Address setup to WE# going HIGH	t _{AS}	70		ns
CE# hold from WE# HIGH	^t CH	0		ns
Data hold from WE# HIGH	tDH	0		ns
Address hold from WE# HIGH	^t AH	0		ns
Write pulse width HIGH	^t WPH	30		ns
WP# setup to WE# going HIGH	tWHS	0		ns
VPP setup to WE# going HIGH	tVPS	200		ns
OE# hold from WE# going HIGH	tOHH	30		ns
WP# hold from valid SRD	tWHH	0		ns
VPP hold from valid SRD	^t VPH	0		ns
WE# HIGH to busy status	^t WB	200		ns
WRITE duration	tWED1	6		us
Boot BLOCK ERASE duration	tWED2	0.5		s
Parameter BLOCK ERASE duration	tWED3	0.5		s
Main BLOCK ERASE duration	tWED4	1		s

FLASH ERASE AND PROGRAM CYCLE TIMING REQUIREMENTS

	2.7V-3.3V Vcc					
	1.65V-3.3V VPP 12V VPP		V PP			
PARAMETER	TYP	MAX	TYP	MAX	UNITS	NOTES
Boot/parameter BLOCK ERASE time	0.5	4	0.5	4	s	
Main BLOCK ERASE time	1	5	1	5	s	
Boot/parameter BLOCK WRITE time	0.1	_	0.1	_	s	
Main BLOCK WRITE time	0.3	_	0.3	_	s	
Program/erase suspend latency	1	3	1	3	S	

WRITE/ERASE OPERATION



TIMING PARAMETERS

	-90	
SYMBOL	MIN	UNITS
^t WPH	30	ns
™P	70	ns
^t AS	70	ns
^t AH	0	ns
^t DS	50	ns
^t DH	0	ns
^t CS	0	ns
^t CH	0	ns
[†] VPS	200	ns
^t RS	150	ns

	-90	
SYMBOL	MIN	UNITS
^t WED1	6	S
^t WED2	0.5	S
^t WED3	0.5	S
^t WED4	1	S
^t VPH	0	ns
^t WB	200	ns
^t WHS	0	ns
^t WHH	0	ns
^t OHH	30	ns

READ OPERATION

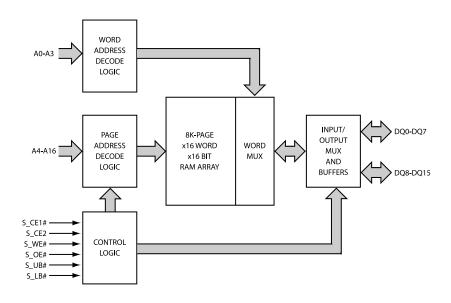
READ TIMING PARAMETERS

	-90				
	Vcc=2.7V-3.3V				
SYMBOL	MIN	MAX			UNITS
^t AA		90			ns
tACE		90			ns
^t AOE		30			ns
^t RWH		600			ns

	-90				
	Vcc=2.7V-3.3V				
SYMBOL	MIN	MAX			UNITS
^t OD		25			ns
^t OH	0				ns
tRC	90				ns

SRAM OPERATING MODES SRAM READ ARRAY

The operational state of the SRAM is determined by S_CE1#, S_CE2, S_WE#, S_OE#, S_UB#, and S_LB#, as indicated in the Truth Table. In order to perform an SRAM READ operation, S_CE1#, and S_OE#, must be at VIL, and S_CE2 and S_WE# must be at VIH. When in this state, S_UB# and S_LB# control whether the lower byte is read (S_UB# VIH, S_LB# VIL), the upper byte is read (S_UB# VIL, S_LB# VIH), both upper and lower bytes are read (S_UB# VIL, S_LB# VIL), or neither are read (S_UB# VIH, S_LB# VIH) and the device is in a standby state.


While performing an SRAM READ operation, current consumption may be reduced by reading within a 16-word page. This is done by holding S CE1# and

S_OE# at V_{IL} , S_WE# and S_CE2 at V_{IH} , and toggling addresses A0-A3. S_UB# and S_LB# control the data width as described above.

SRAM WRITE ARRAY

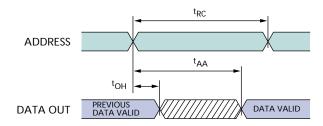
In order to perform an SRAM WRITE operation, S_CE1# and S_WE# must be at VIL, and S_CE2 and S_OE# must be at VIH. When in this state, S_UB# and S_LB# control whether the lower byte is written (S_UB# VIH, S_LB# VIL), the upper byte is written (S_UB# VIL, S_LB# VIL), both upper and lower bytes are written (S_UB# VIL, S_LB# VIL), or neither are written (S_UB# VIH, S_LB# VIH) and the device is in a standby state.

SRAM FUNCTIONAL BLOCK DIAGRAM

TIMING TEST CONDITIONS

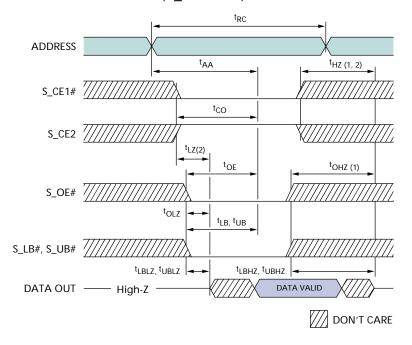
Input pulse levels	.0.1V Vcc to 0.9V Vcc
Input rise and fall times	5ns
Input timing reference levels .	0.5V
Output timing reference levels	s0.5V
Operating Temperature	40°C to +85°C

SRAM READ CYCLE TIMING


DESCRIPTION	SYMBOL	MIN	MAX	UNITS
Read Cycle Time	^t RC	85		ns
Address Access Time	^t AA		85	ns
Chip Enable to Valid Output	tCO		85	ns
Output Enable to Valid Output	^t OE		35	ns
Byte Select to Valid Output	^t LB, ^t UB		85	ns
Chip Enable to Low-Z Output	^t LZ	0		ns
Output Enable to Low-Z Output	^t OLZ	0		ns
Byte Select to Low-Z Output	^t LBZ, ^t UBZ	0		ns
Chip Enable to High-Z Output	^t HZ	0	15	ns
Output Disable to High-Z Output	^t OHZ	0	15	ns
Byte Select Disable to High-Z Output	^t LBHZ, ^t UBHZ	0	15	ns
Output Hold from Address Change	^t OH	5		ns

SRAM WRITE CYCLE TIMING

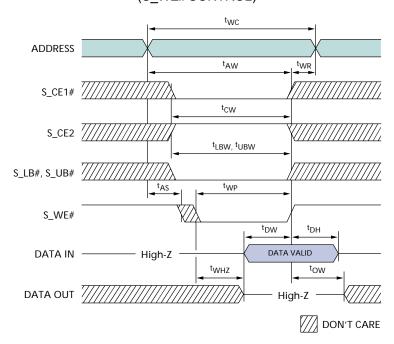
DESCRIPTION	SYMBOL	MIN	MAX	UNITS
Write Cycle Time	tWC		85	ns
Chip Enable to End of Write	tCW	50		ns
Address Valid to End of Write	^t AW	50		ns
Byte Select to End of Write	^t LBW, ^t UBW	50		ns
Address Setup Time	t _{AS}	0		ns
Write Pulse Width	^t WP	50		ns
Write Recovery Time	tWR	0		ns
Write to High-Z Output	tWHZ	0	15	ns
Data to Write Time Overlap	tDW	50		ns
Data Hold from Write Time	tDH	0		ns
End Write to Low-Z Output	tOW	0		ns


READ CYCLE 1

(S_CE1# = S_OE# = VIL; S_CE2, S_WE# = VIH)

READ CYCLE 2

 $(S_WE#=V_{IH})$

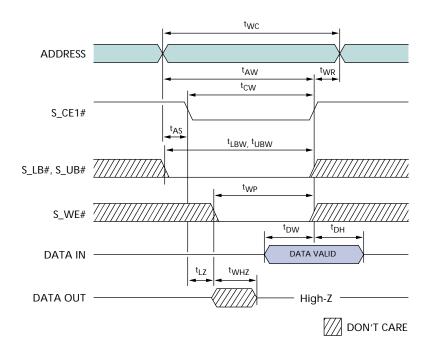


READ TIMING PARAMETERS

SYMBOL	MIN	MAX	UNITS
[†] RC		85	ns
^t AA		85	ns
tCO		85	ns
*OE		35	ns
^t LB, ^t UB		85	ns
١Z	0		ns

SYMBOL	MIN	MAX	UNITS
^t OLZ	0		ns
^t HZ	0	15	ns
^t OHZ	0	15	ns
^t LBHZ, ^t UBHZ	0	15	ns
^t OH	5		ns

WRITE CYCLE (S_WE#CONTROL)

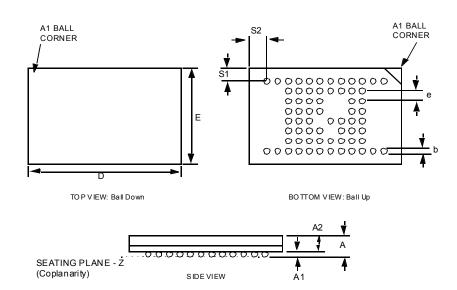


WRITE TIMING PARAMETERS

SYMBOL	MIN	MAX	UNITS
tWC		85	ns
^t CW		85	ns
^t AW		85	ns
tLBW, tUBW		85	ns
^t AS	0		ns
₩P	50		ns

SYMBOL	MIN	MAX	UNITS
^t WR	0		ns
^t WHZ	0	15	ns
^t DW	50		ns
^t DH	0		ns
tOW	0		ns

WRITE CYCLE 2 (S_CE1#CONTROL)



WRITE TIMING PARAMETERS

SYMBOL	MIN	MAX	UNITS
^t WC		85	ns
^t CW		85	ns
^t AW		85	ns
tLBW, tUBW		85	ns
^t AS	0		ns
^t WP	50		ns

SYMBOL	MIN	MAX	UNITS
^t WR	0		ns
tWHZ	0	15	ns
^t DW	50		ns
^t DH	0		ns
tOW WO†	0		ns

66-BALL FBGA

FBGAPACKAGE DIMENSIONS

Stock No. 23134-C 11/01

		MIN	NOM	MAX
Package height	Α	1.20	1.30	1.40
Solder ball height (Standoff)	A1	0.30	0.35	0.40
Package body thickness	A2	0.92	0.97	1.02
Ball lead diameter	b	0.325	0.40	0.475
Body length	D	11.90	12.00	12.10
Body width	E	7.90	8.00	8.10
Ball pitch	е		0.80	
Seating plane coplanarity	Z			0.10
Corner to first bump distance	S1	1.10	1.20	1.30
Corner to first bump distance	S2	1.50	1.60	1.70

All dimensions in millimeters. Solder ball material: 63% Sn, 37% Pb Substrate: plastic laminate Mold compound: epoxy novolac

Revision History

Revision #	Date	Description
Α	January 2001	Preliminary Release
В	May 8, 2001	Updated ballout, removed -11
С	November 2001	Part number change