NIF62514

Product Preview

HDPlus N-Channel Self-protected Field Effect Transistors w/ Temperature and Current Limit

HDPlus devices are an advanced series of power MOSFETs which utilize ON's latest MOSFET technology process to achieve the lowest possible on–resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain–to–Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate–to–Source Clamp.

Features

- Current Limitation
- Thermal Shutdown with Automatic Restart
- Short Circuit Protection
- Low R_{DS(on)}
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection

ABSOLUTE MAXIMUM RATINGS

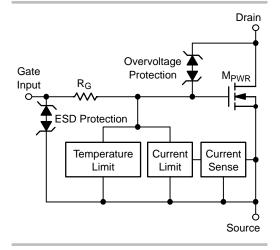
Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in this specification is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

MOSFET MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	40	Vdc
Drain–to–Gate Voltage ($R_{GS} = 1.0 M\Omega$)	V_{DGR}	40	Vdc
Gate-to-Source Voltage	V_{GS}	±16	Vdc
Drain Current – Continuous @ T_A = 25°C – Continuous @ T_A = 100°C – Pulsed ($t_p \le 10 \mu s$)	I _D I _{DM}	2.8 1.8 8*	Adc Adc Apk
Total Power Dissipation @ $T_A = 25$ °C (Note 1) Total Power Dissipation @ $T_A = 25$ °C (Note 2)	P _D P _D	1.1 1.73	W
Thermal Resistance Junction–to–Ambient (Note 1) Junction–to–Ambient (Note 2)	$R_{ heta JA} \ R_{ heta JA}$	114 72.3	°C/W
Single Pulse Drain–to–Source Avalanche Energy ($V_{DD} = 25 \text{ Vdc}$, $V_{GS} = 5.0 \text{ Vdc}$, $V_{DS} = 40 \text{ Vdc}$, $I_L = 2.8 \text{ Apk}$, $L = 80 \text{ mH}$, $R_G = 25 \Omega$)	E _{AS}	300	mJ

- 1. Mounted onto min pad board.
- 2. Mounted onto 1" pad board.
- * Limited by the current limit circuit.

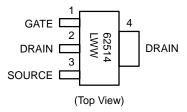
This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor™

http://onsemi.com

2.8 AMPERES 40 VOLTS CLAMPED Page 125 mg


 $R_{DS(on)} = 125 \text{ m}\Omega$

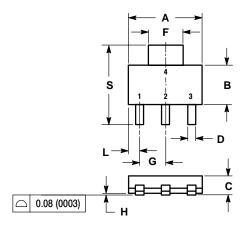
SOT-223 CASE 318E STYLE 3

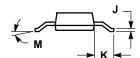
MARKING DIAGRAM

62514 = Specific Device Code L = Location Code WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping	
NIF62514	SOT-223	4000/Tape & Reel	


$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•	•	•	•
$\begin{array}{c} \text{Drain-to-Source Clamped Breakdo} \\ \text{(V}_{GS} = 0 \text{ Vdc, I}_D = 250 \ \mu\text{Adc)} \\ \text{(V}_{GS} = 0 \text{ Vdc, I}_D = 250 \ \mu\text{Adc, T}_J = 250 \ \muAdc, $	g .	V _{(BR)DSS}	40 40	45 -	50 50	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 0 \text{ Vdc})$	150°C)	I _{DSS}	- -	4.1 -	10 100	μAdc
Gate Input Current $(V_{GS} = 5.0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$ $(V_{GS} = -5.0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$			_ _	50 450	100 1000	μAdc
ON CHARACTERISTICS						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 150 \mu Adc)$ Threshold Temperature Coefficient (Negative)	V _{GS(th)}	1.0	1.55 3.8	2.0 4.6	Vdc mV/°C
Static Drain-to-Source On-Resista $(V_{GS} = 10 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J \text{ (V}_{GS} = 10 \text{ Vdc}, I_D = 1.4 \text{ Adc}, T_J (V$	25°C)	R _{DS(on)}	_ _	105 190	125 215	mΩ
Static Drain–to–Source On–Resistance (Note 3) ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 1.4 \text{ Adc}$, $T_J @ 25^{\circ}\text{C}$) ($V_{GS} = 5.0 \text{ Vdc}$, $I_D = 1.4 \text{ Adc}$, $T_J @ 150^{\circ}\text{C}$)		R _{DS(on)}	_ _	130 215	150 240	mΩ
SELF PROTECTION CHARACTERIS	STICS (T _J = 25°C unless otherwise noted)				
Current Limit	$(V_{GS} = 5.0 \text{ Vdc})$ $(V_{GS} = 5.0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _{LIM}	_ _	7.5 4.5	_ _	Adc
Current Limit	(V _{GS} = 10 Vdc) (V _{GS} = 10 Vdc, T _J = 150°C)	I _{LIM}	_ _	8.5 5.5	_ _	Adc
Temperature Limit (Turn-off)	$V_{GS} = 5.0 \text{ Vdc}$	T _{LIM(off)}	150	175	_	°C
Temperature Limit (Circuit Reset)	V _{GS} = 5.0 Vdc	T _{LIM(on)}	135	160	_	°C
Temperature Limit (Turn-off)	V _{GS} = 10 Vdc	T _{LIM(off)}	150	160	_	°C
Temperature Limit (Circuit Reset)	V _{GS} = 10 Vdc	T _{LIM(on)}	135	145	-	°C
ESD ELECTRICAL CHARACTERIST	TICS (T _J = 25°C unless otherwise noted)					
Electro-Static Discharge (ESD) Capability		-	1800	-	_	V
Charge Device Model (CDM) Capability		-	2000	-	-	V

^{3.} Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.

PACKAGE DIMENSIONS

SOT-223 CASE 318E-04 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.249	0.263	6.30	6.70	
В	0.130	0.145	3.30	3.70	
С	0.060	0.068	1.50	1.75	
D	0.024	0.035	0.60	0.89	
F	0.115	0.126	2.90	3.20	
G	0.087	0.094	2.20	2.40	
Н	0.0008	0.0040	0.020	0.100	
7	0.009	0.014	0.24	0.35	
K	0.060	0.078	1.50	2.00	
L	0.033	0.041	0.85	1.05	
M	0 °	10 °	0 °	10 °	
S	0.264	0.287	6.70	7.30	

- STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

http://onsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.