

July 2001 Revised October 2003

NC7SZ74

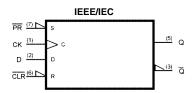
TinyLogic® UHS D-Type Flip-Flop with Preset and Clear

General Description

The NC7SZ74 is a single D-type CMOS Flip-Flop with preset and clear from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving US8 package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad $\rm V_{CC}$ operating range. The device is specified to operate over the 1.65V to 5.5V $\rm V_{CC}$ range. The inputs and output are high impedance when $\rm V_{CC}$ is 0V. Inputs tolerate voltages up to 7V independent of $\rm V_{CC}$ operating voltage.

The signal level applied to the D input is transferred to the Q output during the positive going transition of the CLK pulse

Features


- Space saving US8 surface mount package
- MicroPak™ leadless package
- Ultra High Speed; t_{PD} 2.6 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive; ± 24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As	
NC7SZ74K8X	MAB08A	Z74	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel	
NC7SZ74L8X	MAC08A	N9	8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel	

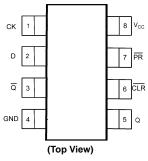
 $\label{eq:total_cond} \mbox{TinyLogio} \mbox{\mathbb{B} is a registered trademark of Fairchild Semiconductor Corporation.} \\ \mbox{MicroPak}^{\mbox{\mathbb{M}}} \mbox{\mathbb{M} is a trademark of Fairchild Semiconductor Corporation.} \\$

Logic Symbol

Pin Descriptions

Pin Names	Description		
D	Data Input		
CK	Clock Pulse Input		
CLR	Direct Clear Input		
Q, Q	Flip-Flop Output		
PR	Direct Preset Input		

Truth Table

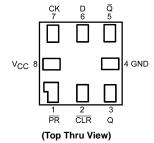

	Inp	uts	Out	puts	Function	
CLR	PR	D	СК	Q	Q	runction
L	Н	X	Х	L	Н	Clear
Н	L	Х	Х	Н	L	Preset
L	L	Χ	Χ	Н	Н	_
Н	Н	L	1	L	Н	_
Н	Н	Н	1	Н	L	_
Н	Н	Х	\downarrow	Q _n	\overline{Q}_n	No Change

- H = HIGH Logic Level L = LOW Logic Level Q_n = No change in data
- Z = High Impedance
- X = Immaterial

 ↑ = Rising Edge

 ↓ = Falling edge

Connection Diagrams


Pin One Orientation Diagram

Pin One

AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V Supply Voltage (V_{CC}) DC Input Voltage (V_{IN}) -0.5V to +7.0V DC Output Voltage (VOUT) -0.5V to +7.0VDC Input Diode Current (I_{IK}) $V_{IN} < 0V$ -50 mA DC Output Diode Current (IOK) -50 mA $V_{OUT} < 0V$ DC Output (I_{OUT}) Source/Sink Current ± 50 mA DC V_{CC}/GND Current (I_{CC}/I_{GND}) \pm 50 mA Storage Temperature Range (T_{STG}) –65°C to +150°C Junction Temperature under Bias (T_J) 150°C Junction Lead Temperature (T_L) 260°C (Soldering, 10 seconds)

Recommended Operating Conditions (Note 2)

Power Supply Operating (V_{CC}) 1.65V to 5.5V Data Retention 1.5V to 5.5V Input Voltage (V_{IN}) 0V to 5.5V Output Voltage (V_{OUT}) Active State $\rm OV$ to $\rm V_{CC}$ 3-STATE 0V to 5.5V Input Rise and Fall Time (t_r, t_f) $V_{CC} = 1.8V, 2.5V \pm 0.2V$ 0 to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 to 10 ns/V $V_{CC} = 5.5V \pm 0.5V$ 0 to 5 ns/V Operating Temperature (T_A) -40°C to +85°C Thermal Resistance (θ_{JA}) 250° C/W

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Power Dissipation (P_D) @ $+85^{\circ}$ C

Symbol	Parameter	V _{CC}	Т	A = +25°	С	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conc	iitions
V _{IH}	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
	Input Voltage	2.3 to 5.5	0.75 V _{CC}			0.7 V _{CC}		·		
V _{IL}	LOW Level Control	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	١ '		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	2.3	2.2	2.3		2.2				$I_{OH} = -100 \mu A$
		3.0	2.9	3.0		2.9				ΙΟΗ = -100 μΑ
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29		٧	$V_{IN} = V_{IH}$	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.8		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.2		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65			0.1		0.1			
	Output Voltage	2.3			0.1		0.1			I _{OL} = 100 μA
		3.0			0.1		0.1			100 μΑ
		4.5			0.1		0.1			
		1.65		0.08	0.24		0.24	٧	$V_{IN} = V_{IH}$	I _{OL} = 4 mA
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5.5 V$	•
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	V_{IN} or $V_{OUT} =$	5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10.0	μΑ	$V_{IN} = 5.5V, GN$	ID

250 mW

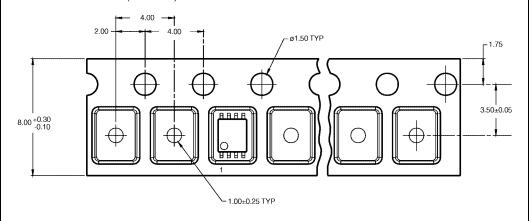
AC Electrical Characteristics

Symbol	Parameter	v _{cc}		T _A = +25°C	;	$T_A = -40^{\circ}C$	C to +85°C	Units	Conditions	Figure
Symbol	i di dilietei	(V)	Min	Тур	Max	Min	Max	Jills	Conditions	Number
f_{MAX}	Maximum Clock	1.8 ± 0.15	75			75				
	Frequency	2.5 ± 0.2	150			150			C _L = 15 pF	
		3.3 ± 0.3	200			200		MHz	$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	250			250		IVII IZ	S ₁ = Open	1, 5
		3.3 ± 0.3	175			175			C _L = 50 pF	
		5.0 ± 0.5	200			200			$R_D = 500\Omega$, $S_1 = Open$	
t _{PLH}	Propagation Delay	1.8 ± 0.15	2.5	6.5	12.5	2.5	13.0			
t_{PHL}	CK to Q, Q	2.5 ± 0.2	1.5	3.8	7.5	1.5	8.0		C _L = 15 pF	
		3.3 ± 0.3	1.0	2.8	6.5	1.0	7.0	ns	$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	8.0	2.2	4.5	8.0	5.0		S ₁ = Open	1, 3
		3.3 ± 0.3	1.0	3.4	7.0	1.0	7.5		C _L = 50 pF	
		5.0 ± 0.5	1.0	2.6	5.0	1.0	5.5		$R_D = 500 \Omega$, $S_1 = Open$	
t _{PLH}	Propagation Delay	1.8 ± 0.15	2.5	6.5	14.0	2.5	14.5			
t_{PHL}	$\overline{\text{CLR}}$, $\overline{\text{PR}}$, to Q, $\overline{\text{Q}}$	2.5 ± 0.2	1.5	3.8	9.0	1.5	9.5		$C_L = 15 pF$	
		3.3 ± 0.3	1.0	2.8	6.5	1.0	7.0	ns	$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	8.0	2.2	5.0	0.8	5.5	115	S ₁ = Open	1, 3
		3.3 ± 0.3	1.0	3.4	7.0	1.0	7.5		C _L = 50 pF	
		5.0 ± 0.5	1.0	2.6	5.0	1.0	5.5		$R_D = 500 \Omega$, $S_1 = Open$	
t _S	Setup Time,	1.8 ± 0.15	6.5			6.5				
	CK to D	2.5 ± 0.2	3.5			3.5			C _L = 15 pF	
		3.3 ± 0.3	2.0			2.0		ns	$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	1.5			1.5		115	S ₁ = Open	1, 4
		3.3 ± 0.3	2.0			2.0			C _L = 50 pF	
		5.0 ± 0.5	1.5			1.5			$R_D = 500 \Omega$, $S_1 = Open$	
t _H	Hold Time,	1.8 ± 0.15	0.5			0.5				
	CK to D	2.5 ± 0.2	0.5			0.5			C _L = 15 pF	
		3.3 ± 0.3	0.5			0.5		ns	$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	0.5			0.5		ns	S ₁ = Open	1, 4
		3.3 ± 0.3	0.5			0.5			C _L = 50 pF	
		5.0 ± 0.5	0.5			0.5			$R_D = 500 \Omega$, $S_1 = Open$	
t _W	Pulse Width,	1.8 ± 0.15	6.0			6.0				
	CK, PR, CLR	2.5 ± 0.2	4.0			4.0			C _L = 15 pF	
		3.3 ± 0.3	3.0			3.0			$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	2.0			2.0		ns	S ₁ = Open	1, 5
		3.3 ± 0.3	3.0			3.0			CL = 50 pF	
		5.0 ± 0.5	2.0			2.0			$R_D = 500 \Omega$, $S_1 = Open$	
t _{REC}	Recover Time	1.8 ± 0.15	8.0			8.0				
	CLR, PR to CK	2.5 ± 0.2	4.5			4.5			C _L = 15 pF	
		3.3 ± 0.3	3.0			3.0			$R_D = 1 M\Omega$	Figures
		5.0 ± 0.5	3.0			3.0		ns	S ₁ = Open	1, 4
		3.3 ± 0.3	3.0			3.0			C _L = 50 pF	
		5.0 ± 0.5	3.0			3.0			$R_D = 500 \Omega$, $S_1 = Open$	

Capacitance (Note 3)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Input Capacitance	3		pF	$V_{CC} = 0V$
C _{OUT}	Output Capacitance	4		pF	V _{CC} = 0V
C _{PD}	Power Dissipation Capacitance (Note 4)	10		pF	$V_{CC} = 3.3V$
				Pi	$V_{CC} = 5.0V$

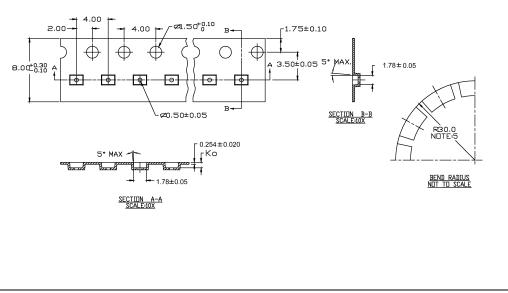
Note 3: $T_A = +25C$, f = 1MHz.


Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{|N}) + (I_{CC} static)$.

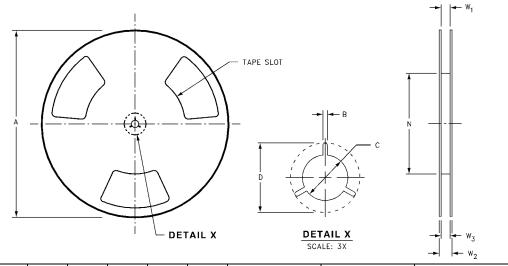
AC Loading and Waveforms C_L includes load and stray capacitance $\label{eq:cp_input} \text{CP Input} = \text{AC Waveform}; \, t_{\text{r}} = t_{\text{f}} = 2.5 \,\, \text{ns};$ Input PRR = 1.0 MHz; $t_w = 500 \text{ ns}$ CP Input PRR = 10 MHz; Duty Cycle = 50%FIGURE 1. AC Test Circuit D Input PRR = 5MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit t_Γ = 2.5ns -CP Input 50% D Input -10% Q Output FIGURE 3. AC Waveforms V_{CC} CKInput 50% CK Input GND GND ts ts V_{CC} V_{CC} Data Input Data Input GND GND FIGURE 5. AC Waveforms FIGURE 4. AC Waveforms

Tape and Reel Specification TAPE FORMAT for US8

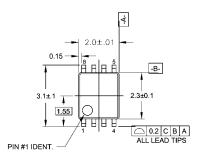
174 E1 G14M74 101 000									
Package	Tape	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
K8X	Carrier	3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

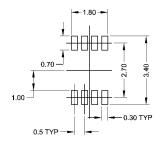

TAPE DIMENSIONS inches (millimeters)

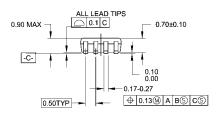
TAPE FORMAT for MicroPak

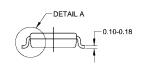

Package	Таре	Number	Cavity	Cover Tape Status	
Designator	Section	Cavities	Status		
	Leader (Start End)	125 (typ)	Empty	Sealed	
L8X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

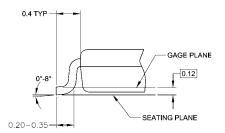
TAPE DIMENSIONS inches (millimeters)


Tape and Reel Specification (Continued)


REEL DIMENSIONS inches (millimeters)

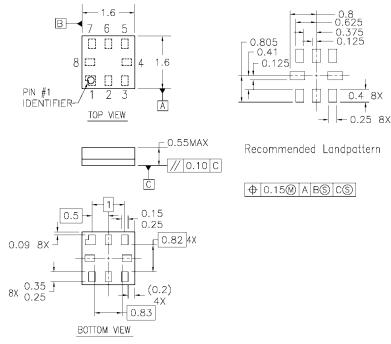

Tape Size	A	В	С	D	N	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
0 111111	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)


Physical Dimensions inches (millimeters) unless otherwise noted



LAND PATTERN RECOMMENDATION

NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-187 B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MAB08AREVC

8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. PACKAGE REGISTRATION WITH JEDEC IS ANTICIPATED
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y.14M-1994

MAC08AREVB

8-Lead MicroPak, 1.6 mm Wide Package Number MAC08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com