FAIRCHILD

SEMICONDUCTOR

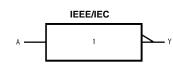
NC7ST04 TinyLogic® HST Inverter

General Description

The NC7ST04 is a single high performance CMOS Inverter, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both input and output with respect to the $V_{\mbox{\scriptsize CC}}$ and $\mbox{\scriptsize GND}$ rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible input facilitates TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC/HCT.

February 1997 Revised May 2003

NC7ST04 TinyLogic® HST Inverter


Order	Package Product Cod		Package Description	Supplied As	
Number	Number	Top Mark	Fackage Description	Supplied AS	
NC7ST04M5X	MA05B	8S04	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel	
NC7ST04P5X	MAA05A	T04	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel	
NC7ST04L6X	MAC06A	XX	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel	

Features

TTL-compatible inputs

Logic Symbol

Ordering Code:

Pin Descriptions

Pin Names	Description
А	Input
Y	Output
NC	No Connect

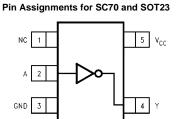
Function Table

Υ =	Ā
Input	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

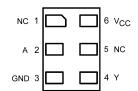
TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.

Connection Diagrams


■ Space saving SOT23 or SC70 5-lead package

■ High Speed; t_{PD} <7 ns typ, V_{CC} = 5V, C_L = 15 pF

 \blacksquare Low Quiescent Power; I_{CC} <1 μA typ, V_{CC} = 5.5V


■ Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}

■ Ultra small MicroPak[™] leadless package

Pad Assignments for MicroPak

(Top Thru View)

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2003 Fairchild Semiconductor Corporation DS012185

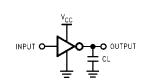
Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions
DC Input Diode Current (I _{IK})		Supply Voltage
V _{IN} < -0.5V	–20 mA	Input Voltage (V
$V_{IN} \ge V_{CC} + 0.5V$	+20 mA	Output Voltage (
DC Input Voltage (VIN)	–0.5V to V _{CC} +0.5V	Operating Temp
DC Output Diode Current (I _{OK})		Input Rise and F
$V_{OUT} < -0.5V$	–20 mA	$V_{CC} = 5.0V$
$V_{OUT} > V_{CC} + 0.5V$	+20 mA	Thermal Resista
Output Voltage (V _{OUT})	–0.5V to V _{CC} +0.5V	SOT23-5
DC Output Source or Sink		SC70-5
Current (I _{OUT})	±12.5 mA	
DC V_{CC} or Ground Current per		
Supply Pin (I_{CC} or I_{GND})	±25 mA	
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
Junction Temperature (T _J)	150°C	Note 1: Absolute Max
DC V_{CC} or Ground Current per		age to the device may without exception, to
(Soldering, 10 seconds)	260°C	power supply, temper does not recommend
Power Dissipation (P _D) @ +85°C		tions.
SOT23-5	200 mW	Note 2: Unused inputs
SC70-5	150 mW	

Recommended Operating

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

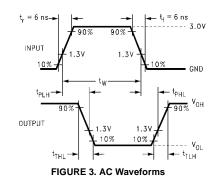

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	V_{CC} $T_A = +25^{\circ}C$		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C}$ to $+85^{\circ}\textbf{C}$		Units	Conditions	
	i ulunotor	(V)	Min	Тур	Max	Min	Max	onno	Conditions
VIH	HIGH Level Input Voltage	4.5–5.5	2.0			2.0		V	
V _{IL}	LOW Level Input Voltage	4.5–5.5			0.8		0.8	V	
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4		V	$I_{OH}=-20~\mu\text{A},~V_{IN}=V_{IL},$
		4.5	4.18	4.35		4.13		V	$I_{OH} = -2 \text{ mA}$
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1	V	$I_{OL}=20~\mu\text{A},~V_{IN}=V_{IH},$
		4.5		0.10	0.26		0.33	V	$I_{OL} = 2 \text{ mA}$
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μΑ	$0 \leq V_{IN} \leq 5.5 V$
I _{CC}	Quiescent Supply Current	5.5			1.0		10.0	μΑ	$V_{IN} = V_{CC}$ or GND
ICCT	I _{CC} per Input	5.5			2.0		2.9	mA	Input $V_{IN} = 0.5V$ or 2.4V

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	5.0		3.5	12			ns	C _L = 15 pF	
t _{PHL}		5.0		6.0	17					
		4.5		6.2	16		20			Figures
		4.5		11.4	27		31	ns		1, 3
		5.5		4.3	14		18			
		5.5		11.1	26		30			
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	C _L = 15 pF	
t _{THL}		4.5		11	25	1	31	ns	$C_1 = 50 pF$	Figures 1, 3
		5.5		10	21		26	115	0L - 20 hL	., 0
CIN	Input Capacitance	Open		2	10			pF		
CPD	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

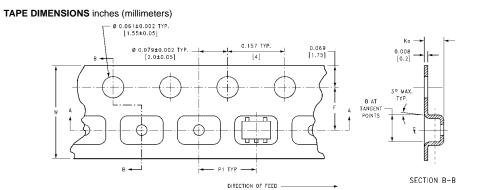
Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CCstatic}).

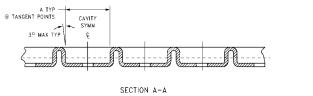
AC Loading and Waveforms



 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_w = 500$ ns

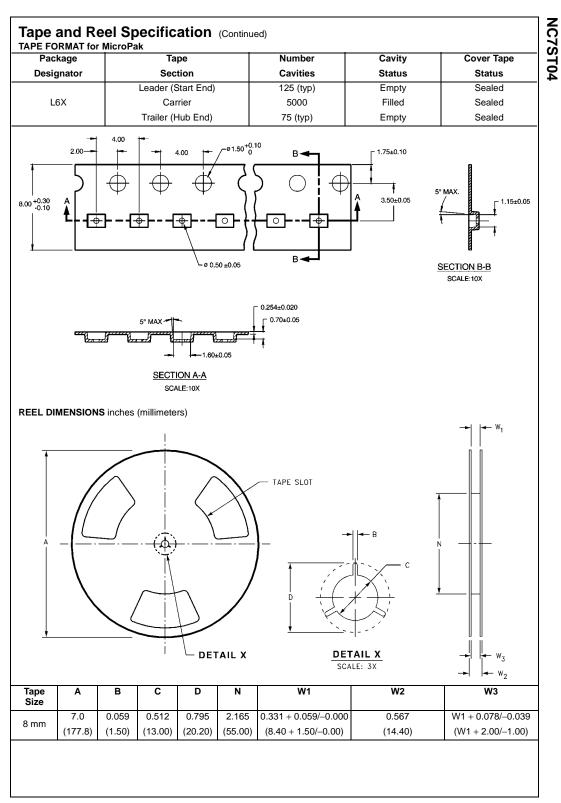
FIGURE 1. AC Test Circuit

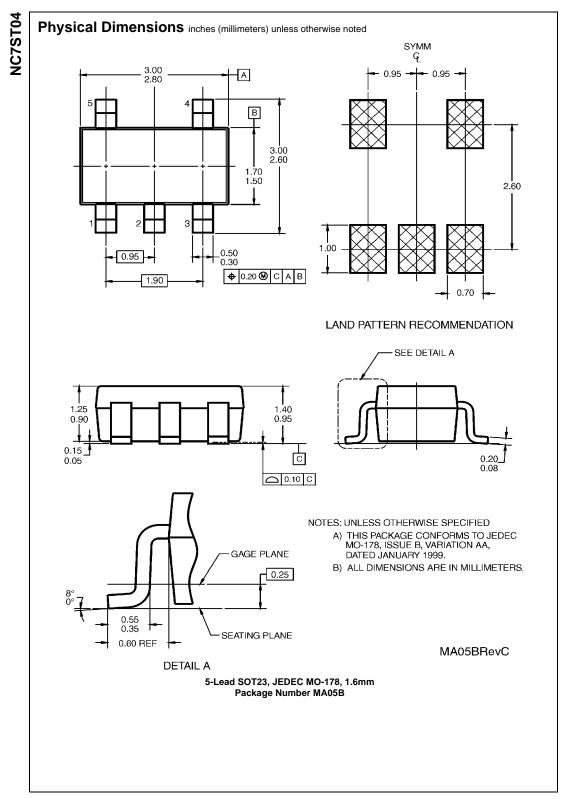

Input = AC Waveform; PRR = Variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

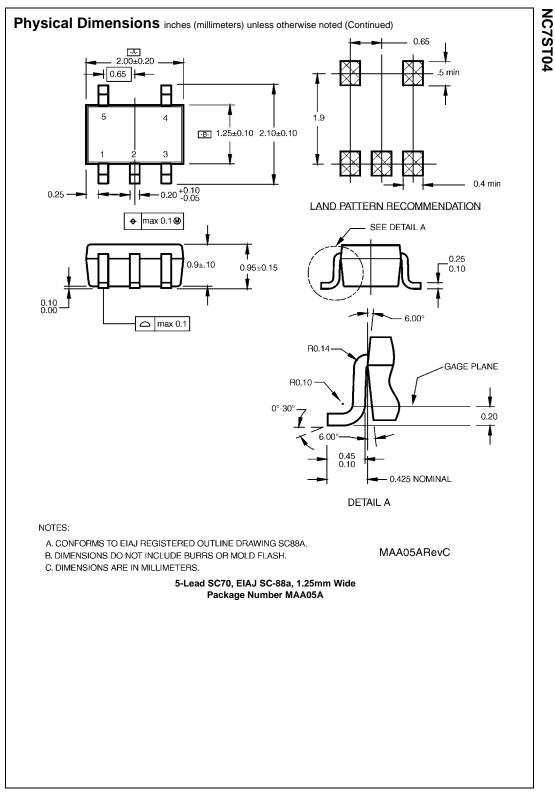


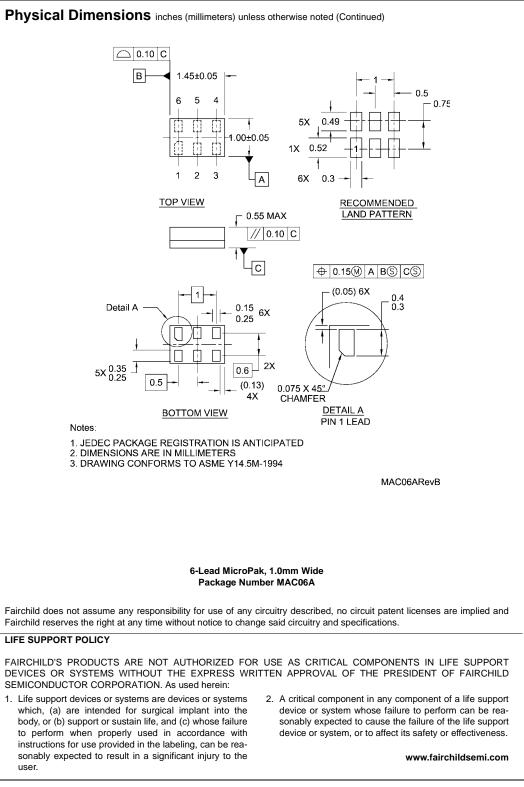
Tape and Reel Specification TAPE FORMAT for SC70 and SOT23

Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed









					BEND RADIUS NOT TO SCALE					
Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W			
SC70-5	9 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004			
	8 mm	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)			
SOT23-5	9 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012			
	8 mm	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)			

