Power MOSFET P-Channel ChipFET™

3.9 Amps, 20 Volts

Features

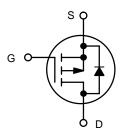
- Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature ChipFET Surface Mount Package

Applications

Power Management in Portable and Battery–Powered Products; i.e.,
 Cellular and Cordless Telephones and PCMCIA Cards

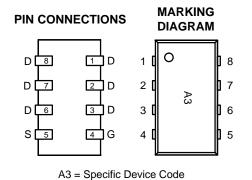
MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	5 Secs	Steady State	Unit
Drain-Source Voltage	V _{DS}	-20		V
Gate-Source Voltage	V _{GS}	±12		V
Continuous Drain Current $(T_J = 150^{\circ}C) \text{ (Note 1)}$ $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	I _D	±5.3 ±3.8	±3.9 ±2.8	А
Pulsed Drain Current	I _{DM}	±20		Α
Continuous Source Current (Note 1)	I _S	-2.1	-1.1	Α
Maximum Power Dissipation (Note 1) T _A = 25°C T _A = 85°C	P _D	2.5 1.3	1.3 0.7	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150		°C


^{1.} Surface Mounted on 1" x 1" FR4 Board.

ON Semiconductor®

http://onsemi.com


 $3.9 \text{ AMPS} \\ 20 \text{ VOLTS} \\ R_{DS(on)} = 60 \text{ m}\Omega$

P-Channel MOSFET

ChipFET CASE 1206A STYLE 1

ORDERING INFORMATION

Device	Package	Shipping		
NTHS5441T1	ChipFET	3000/Tape & Reel		

1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
$\label{eq:maximum Junction-to-Ambient (Note 2)} \begin{split} &t \leq 5 \text{ sec} \\ &\text{Steady State} \end{split}$	R _{thJA}	40 80	50 95	°C/W
Maximum Junction–to–Foot (Drain) Steady State	R _{thJF}	15	20	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Static						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.6	-	1.2	V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$	_	_	±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	-1.0	μΑ
		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{J} = 85^{\circ}\text{C}$	-	-	-5.0	
On-State Drain Current (Note 3)	I _{D(on)}	$V_{DS} \le -5.0 \text{ V}, V_{GS} = -4.5 \text{ V}$	-20	-	-	Α
Drain-Source On-State Resistance (Note 3)	r _{DS(on)}	$V_{GS} = -3.6 \text{ V}, I_D = -3.7 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -3.9 \text{ A}$	_ _	0.050 0.046	0.06 -	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -3.1 \text{ A}$	_	0.070	0.083	
Forward Transconductance (Note 3)	9 _{fs}	$V_{DS} = -10 \text{ V}, I_D = -3.9 \text{ A}$	_	12	-	mhos
Diode Forward Voltage (Note 3)	V _{SD}	I _S = -1.1 A, V _{GS} = 0 V	-	-0.8	-1.2	V
Dynamic (Note 4)						
Total Gate Charge	Qg		-	11	22	nC
Gate–Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -3.9 \text{ A}$	_	3.0	-	
Gate-Drain Charge	Q _{gd}		_	2.5	-	
Input Capacitance	C _{iss}		-	710	-	pF
Output Capacitance	C _{oss}	$V_{DS} = -5.0 \text{ Vdc}, V_{GS} = 0 \text{ Vdc},$ f = 1.0 MHz	-	400	-	
Reverse Transfer Capacitance	C _{rss}		_	140	-	
Turn-On Delay Time	t _{d(on)}		-	14	30	ns
Rise Time	t _r	$V_{DD} = -10 \text{ V}, R_L = 10 \Omega$	-	22	55	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1.0 \text{ A, V}_{GEN} = -4.5 \text{ V,}$ $R_G = 6 \Omega$	_	42	100	
Fall Time	t _f		_	35	70	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = -1.1 A, di/dt = 100 A/μs	-	30	60	

Surface Mounted on 1" x 1" FR4 Board.
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Guaranteed by design, not subject to production testing.

TYPICAL ELECTRICAL CHARACTERISTICS

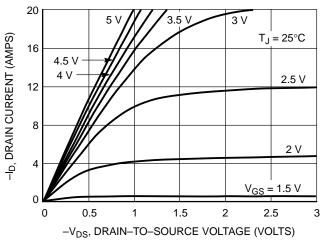


Figure 1. On-Region Characteristics

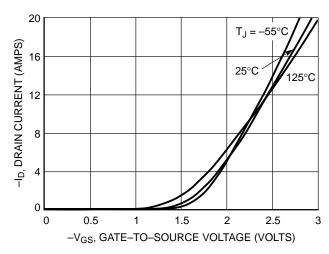


Figure 2. Transfer Characteristics

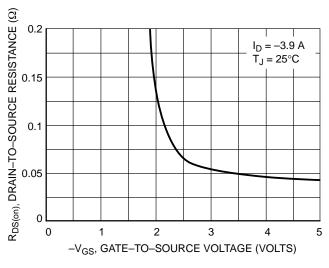


Figure 3. On–Resistance versus Gate–to–Source Voltage

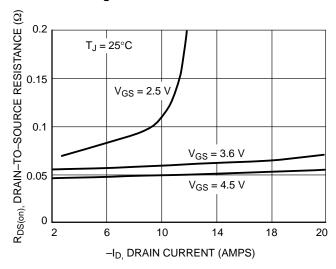


Figure 4. On–Resistance versus Drain Current and Gate Voltage

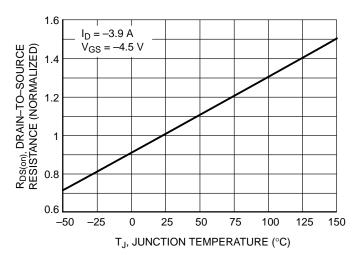


Figure 5. On–Resistance Variation with Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

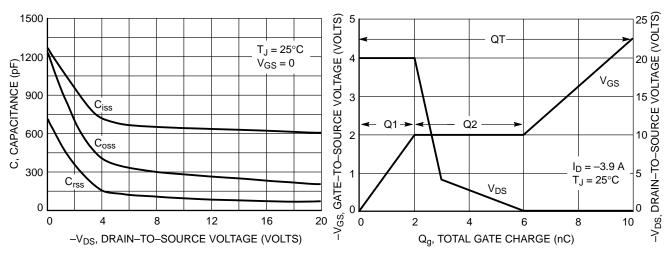


Figure 6. Capacitance Variation

Figure 7. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

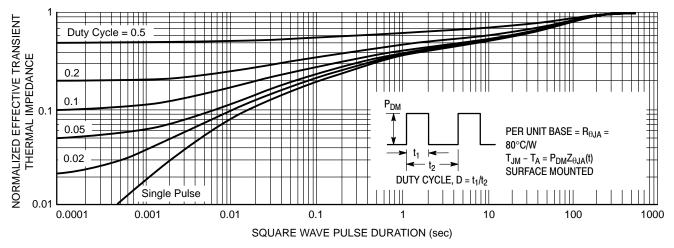


Figure 8. Normalized Thermal Transient Impedance, Junction-to-Ambient

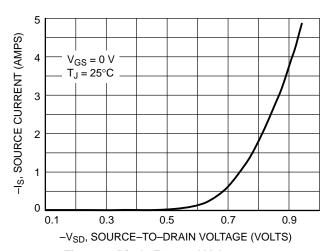
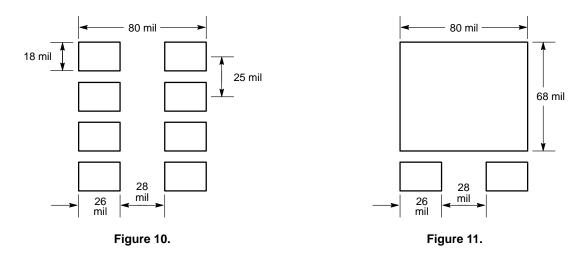
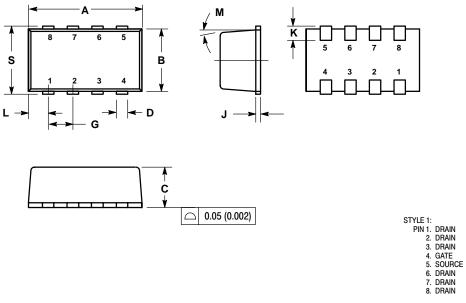



Figure 9. Diode Forward Voltage versus Current

BASIC PAD PATTERNS


The basic pad layout with dimensions is shown in Figure 11. This is sufficient for low power dissipation MOSFET applications, but power semiconductor performance requires a greater copper pad area, particularly for the drain leads.

The minimum recommended pad pattern shown in Figure 10 improves the thermal area of the drain connections (pins 1, 2, 3, 6, 7, 8) while remaining within the

confines of the basic footprint. The drain copper area is 0.0054 sq. in. (or 3.51 sq. mm). This will assist the power dissipation path away from the device (through the copper leadframe) and into the board and exterior chassis (if applicable) for the single device. The addition of a further copper area and/or the addition of vias to other board layers will enhance the performance still further.

PACKAGE DIMENSIONS

ChipFET™ CASE 1206A-03 ISSUE D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
 4. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
 6. NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.
 7. 1206A-01 AND 1206A-02 OBSOLETE. NEW STANDARD IS 1206A-03.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.95	3.10	0.116	0.122	
В	1.55	1.70	0.061	0.067	
С	1.00	1.10	0.039	0.043	
D	0.25	0.35	0.010	0.014	
G	0.65 BSC		0.025 BSC		
J	0.10	0.20	0.004	0.008	
K	0.28	0.42	0.011	0.017	
L	0.55 BSC		0.022 BSC		
M	5 °	5° NOM		NOM	
S	1.80	2.00	0.072	0.080	

Notes

ChipFET is a trademark of Vishay Siliconix

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051

Phone: 81–3–5773–3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.