InGaAsP MQW-DFB LASER DIODE IN CAN PACKAGE (5 mW)

NX6301 SERIES

FEATURES

• OPTICAL OUTPUT POWER:

Po = 5.0 mW

LOW THRESHOLD CURRENT:

ITH = 13 mA

• HIGH SPEED:

tr, tf = 0.5 ns MAX

• SMSR:

40 dB

• WIDE OPERATING TEMPERATURE RANGE:

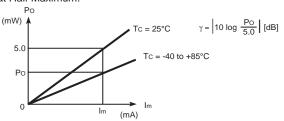
 $Tc = -40 \text{ to } +85^{\circ}C$

- InGaAs MONITOR PIN-PD
- CAN PACKAGE:

ø5.6 mm

BASED ON TELCORDIA RELIABILITY

DESCRIPTION


The NX6301 Series is a 1310 nm Multiple Quantum Well (MQW) structured Distributed Feed-Back (DFB) laser diode with InGaAs monitor PIN-PD. This device is ideal for Synchronous Digital Hierarchy (SDH) and SONET systems, STM-1/OC-3, STM-4/OC-12 and ITU-T recommendations.

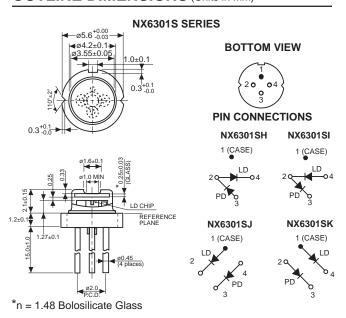
ELECTRO-OPTICAL CHARACTERISTICS (Tc = 25°C, unless otherwise specified)

	PART NUMBER		NX6301 Series		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Vop	Operating Voltage, Po = 5.0 mW, Tc = -40 to +85°C	V	_	1.2	1.5
Ітн	Threshold Current Tc = 85°C	mA mA	_ _	13 40	25 50
Ртн	Threshold Output Power, Tc = -40 to +85°C, IF = ITH	μW	_	_	200
ηd	Differential Efficiency	W/A	0.15	0.25	_
$\Delta\eta$ d	Temperature Dependence $\Delta \eta d = 10 \log \frac{\eta d \ (@ 85^{\circ}C)}{\eta d \ (@ 25^{\circ}C)}$	dB	-3.0	-2.3	-
λр	Peak Emission Wavelength, Po = 5.0 mW, Tc = -40 to +85°C	nm	1280	_	1335
SMSR	Side mode Suppression Ratio Po = 5.0 mW, Tc = -40 to +85°C	dB	30	40	_
θΤ	Vertical Beam Angle ¹ , Po = 5.0 mW, FAHM ²	deg	-	30	40
θ_{\parallel}	Lateral Beam Angle ¹ , Po = 5.0 mW, FAHM ²	deg	-	25	35
tr	Rise Time, 10 to 90%	ns	_	0.05	0.5
tf	Fall Time, 90 to 10%	ns	_	0.3	0.5
lm	Monitor Current, Po = 5.0 mW, VR = 5 V	μΑ	200	600	
ΙD	Monitor Dark Current, VR = 5 V VR = 5 V, Tc = -40 to +85°C	nA nA	-	0.1	50 500
Ct	Monitor PD Terminal Capacitance, VR = 5 V, f = 1 MHz	pF	_	1.0	20
γ	Tracking Error ³ Im = const, (@ Po = 5.0 mW, Tc = 25° C) Tc = -40 to $+85^{\circ}$ C	dB	-1.0	_	1.0

Notes:

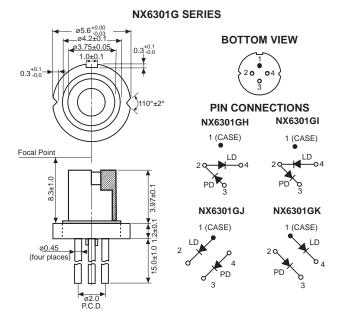
- 1. Applicable only to NX6301S Series.
- 2. FAHM: Full Angle at Half Maximum.
- 3. Tracking Error: γ

ABSOLUTE MAXIMUM RATINGS¹


(Tc = 25°C, unless otherwise specified)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Pf	Optical Output Power	mW	10
lF	Forward Current of LD	mA	150
VR	Reverse Voltage of LD	V	2.0
lF	Forward Current of PD	mA	10
VR	Reverse Voltage of PD	V	20
Tc	Operating Case Temperature	°C	-40 to +85
Тѕтс	Storage Temperature	°C	-40 to +85
TSLD	Lead Soldering Temperature (10 s)	°C	350 (3 sec.)
RH	Relative Humidity (noncondensing)	%	85

Note:


 Operation in excess of any one of these parameters may result in permanent damage.

OUTLINE DIMENSIONS (Units in mm)

ORDERING INFORMATION

PART NUMBER	PACKAGE
NX6301SH	4-pin CAN with flat glass cap
NX6301SI	
NX6301SJ	
NX6301SK	
NX6301GH	4-pin with aspherical lens cap
NX6301GI	
NX6301GJ	
NX6301GK	

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.