NTQS6466

Product Preview

Power MOSFET 6.8 Amps, 20 Volts

N-Channel TSSOP-8

Features

- New Low Profile TSSOP–8 Package
- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- IDSS and VDS(on) Specified at Elevated Temperatures

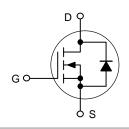
Applications

- Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones
- Lithium Ion Battery Applications
- Note Book PC

MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	10 secs	Steady State	Unit
Drain-to-Source Voltage	VDS	20		Vdc
Gate-to-Source Voltage	VGS	12		
Continuous Drain Current - T _J = 150°C (Note 1.) - T _A = 25°C	ΙD	8.1	6.8	Adc
− T _A = 70°C		6.6	5.4	
Pulsed Drain Current (10 μs Pulse Width)	IDM	±30		Apk
Continuous Source Current (Diode Conduction) (Note 1.)	IS	1.35	0.95	Adc
Maximum Power Dissipation (Note 1.) - T _A = 25°C - T _A = 70°C	P _D	1.5 1.0	1.05 0.67	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150		°C
Single Pulse Drain-to-source Avalanche Energy – Starting TJ= 25°C (VDD = 50 V, IL = 7.7 Apk, L = 44 mH)	EAS	1.:	36	J

^{1.} Surface mounted to 1" x 1" FR-4 board.

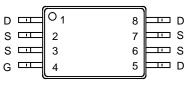


ON Semiconductor

http://onsemi.com

6.8 AMPERES 20 VOLTS RDS(on) = 17 m Ω

N-Channel



MARKING DIAGRAM

= Year WW = Work Week = MOSFET

PIN ASSIGNMENT

Top View

ORDERING INFORMATION

Device	Package	Shipping
NTQS6466	TSSOP-8	100 Units/Rail
NTQS6466R2	TSSOP-8	3000/Tape & Reel

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

NTQS6466

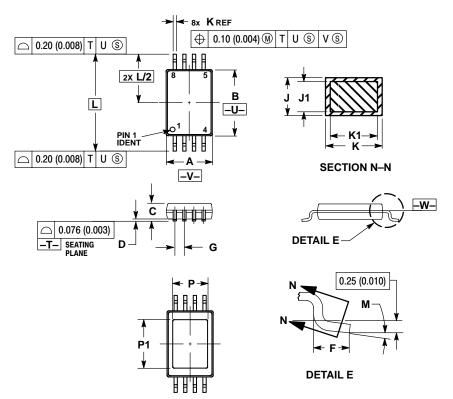
THERMAL RESISTANCE RATINGS

Rating	Symbol	Typical	Max	Unit
Maximum Junction-to-Ambient (Note 2.)	$R_{\theta JA}$			°C/W
t ≤ 10 sec		65	83	
Steady State		100	120	
Maximum Junction-to-Foot	$R_{ heta JF}$			°C/W
Steady State		43	52	

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Cha	racteristic	Symbol	Min	Тур	Max	Unit
STATIC						
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μA)		VGS(th)	0.45	0.9	_	Vdc
Gate-Body Leakage (VDS = 0 Vd	akage (V _{DS} = 0 Vdc, V _{GS} = ±8 Vdc)		_	_	±100	nAdc
$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	ero Gate Threshold Voltage Drain Current (VDS = 16 Vdc, VGS = 0 Vdc) (VDS = 16 Vdc, VGS = 0 Vdc, TJ = 70°C)		_ _	- -	1.0 10	μAdc
On-State Drain Current (Note 3.) (V _{DS} = 5.0 Vdc, V _{GS} = 4.5 Vdc)	I _D (on)	20	_	_	Adc
Drain-Source On-State Resistant (VGS = 4.5 Vdc, ID = 8.1 Adc) (VGS = 2.5 Vdc, ID = 6.6 Adc)	e (Note 3.)	R _{DS(on)}	_ _	0.014 0.017	0.017 0.020	Ω
Forward Transconductance (VDS	Forward Transconductance (V _{DS} = 10 Vdc, I _D = 8.1 Adc) (Note 3.)		-	30	-	S
Diode Forward Voltage (I _S = 1.35	Forward Voltage (I _S = 1.35 Adc, V _{GS} = 0 Vdc (Note 3.)		0.65	1.1	Vdc	
DYNAMIC (Note 4.)						
Total Gate Charge	(Vps = 10 Vdc,	Qg	-	25	27	nC
Gate-Source Charge	$V_{GS} = 5.0 \text{ Vdc},$	Q _{gs}	-	3.2	-	
Gate-Drain Charge	$I_D = 8.1 \text{ Adc}$	Q _{gd}	-	7.0	-	
Turn-On Delay Time	$(V_{DD} = 10 \text{ Vdc}, R_L = 10 \Omega,$ $I_D \cong 1.0 \text{ Adc},$	^t d(on)	-	17	45	ns
Rise Time		t _r	-	80	100	
Turn-Off Delay Time	$V_{GEN} = 4.5 \text{ Vdc},$	td(off)	-	95	110	
Fall Time	$R_G = 6.0 \Omega$)	t _f	-	90	100	
Source–Drain Reverse Recovery Time	(I _F = 1.5 Adc, di/dt = 100 A/μs)	t _{rr}	_	28	70	ns

^{2.} Surface mounted to 1" x 1" FR-4 board.


^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{4.} Guaranteed by design, not subject to production testing.

NTQS6466

PACKAGE DIMENSIONS

TSSOP-8 CASE 948S-01 **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	4.30	4.50	0.169	0.177	
С		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65 BSC		0.026 BSC		
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
M	0°	8°	0°	8 °	
Р		2.20		0.087	
P1		3.20		0.126	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.