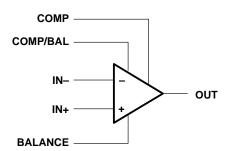

SLOS070A - JULY 1979 - REVISED MARCH 2003

- Equivalent Input Noise Voltage . . .
 3.5 nV/√Hz
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . .
 100 dB Typ
- High DC Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing
 32 V Typ With V_{CC+} = ±18 V and R_L = 600 Ω
- High Slew Rate . . . 13 V/μs Typ
- Wide Supply Voltage Range ±3 V to ±20 V
- Low Harmonic Distortion
- Designed To Be Interchangeable With Signetics NE5534 and NE5534A

description/ordering information

The NE5534 and NE5534A are high-performance operational amplifiers combining excellent dc and ac characteristics. Some of the features include very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, and high slew rate.

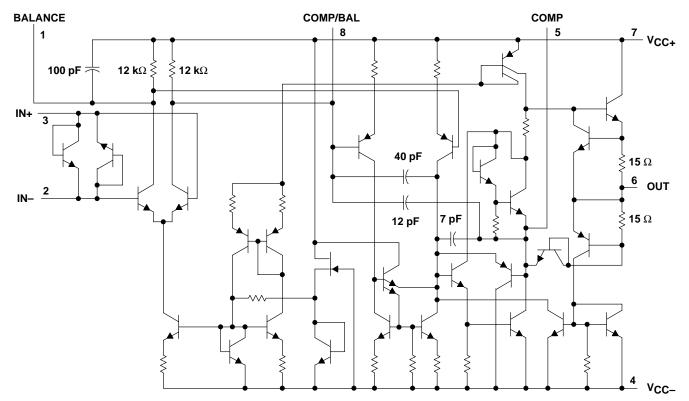
These operational amplifiers are internally compensated for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between COMP and COMP/BAL. The devices feature input-protection diodes, output short-circuit protection, and offset-voltage nulling capability.


For the NE5534A, a maximum limit is specified for equivalent input noise voltage.

ORDERING INFORMATION

TA	V _{IO} max AT 25°C	PACKAGE [†]		PACKAGE [†] ORDERABLE PART NUMBER			
	°C 4 mV	PDIP (P)	Tube of 50	NE5534P	NE5534P		
			Tube of 50	NE5534AP	NE5534AP		
		SOIC (D)	Tube of 75	NE5534D	NE5534		
0°C to 70°C			Reel of 2500	NE5534DR	NE0034		
			Tube of 75	NE5534AD	5534A		
			Reel of 2500	NE5534ADR	5534A		
		SOP (PS)	Reel of 2000	NE5534PS	N5534		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


symbol

TEXAS INSTRUMENTS

SLOS070A - JULY 1979 - REVISED MARCH 2003

schematic

All component values shown are nominal.

NE5534, NE5534A LOW-NOISE OPERATIONAL AMPLIFIERS

SLOS070A - JULY 1979 - REVISED MARCH 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage: V _{CC+} (see Note 1)	22 V
V _{CC} _ (see Note 1)	22 V
Input voltage either input (see Notes 1 and 2)	V _{CC+}
Input current (see Note 3)	±10 mA
Duration of output short circuit (see Note 4)	Unlimited
Package thermal impedance, θ_{JA} (see Notes 5 and 6): D package	97°C/W
P package	85°C/W
PS package	95°C/W
Operating virtual junction temperature, T _J	150°C
Lead temperature range 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{sta}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
- 3. Excessive current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used.
- 4. The output may be shorted to ground or to either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
- 5. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC+}	Supply voltage	5	15	V
V _{CC} -	Supply voltage	-5	-15	V

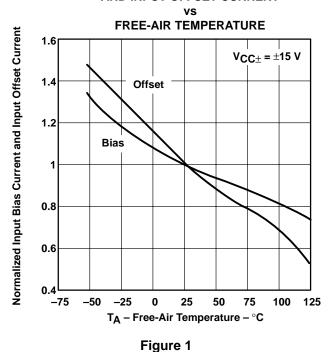
NE5534, NE5534A LOW-NOISE OPERATIONAL AMPLIFIERS

SLOS070A - JULY 1979 - REVISED MARCH 2003

electrical characteristics, $V_{CC}^{\pm} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†		MIN	TYP	MAX	UNIT
Input offset voltage	$V_O = 0$, $R_S = 50 \Omega$	T _A = 25°C		0.5	4	mV
		T _A = Full range			5	
Input offset current	V _O = 0	T _A = 25°C		20	300	nA
		T _A = Full range			400	
Input bigg current	V _O = 0	T _A = 25°C		500	1500	nA
input bias current		T _A = Full range			2000	IIA
Common-mode input voltage range		_	±12	±13		V
Maximum peak-to-peak output voltage swing	P. > 600 O	$V_{CC\pm} = \pm 15 \text{ V}$	24	26		V
		$V_{CC\pm} = \pm 18 \text{ V}$	30	32		
Large-signal differential voltage amplification	$V_O = \pm 10 \text{ V},$ $R_L \ge 600 \Omega$	T _A = 25°C	25	100		V/mV
		T _A = Full range	15			
Small-signal differential voltage amplification	f = 10 kHz	CC = 0		6		V/mV
		$C_C = 22 pF$		2.2		
Maximum-output-swing bandwidth	V _O = ±10 V	CC = 0		200		kHz
		$C_C = 22 pF$		95		
	$V_{CC\pm} = \pm 18 \text{ V},$ $R_L \ge 600 \Omega,$	$V_O = \pm 14 \text{ V},$ $C_C = 22 \text{ pF}$		70		
Unity-gain bandwidth	$C_C = 22 \text{ pF},$	C _L = 100 pF		10		MHz
Input resistance			30	100		kΩ
Output impedance	$A_{VD} = 30 \text{ dB},$ $C_{C} = 22 \text{ pF},$	$R_L \ge 600 \Omega$, $f = 10 \text{ kHz}$		0.3		Ω
Common-mode rejection ratio	$V_O = 0$, $R_S = 50 \Omega$	VIC = VICRmin,	70	100		dB
Supply voltage rejection ratio (ΔV _{CC} /ΔV _{IO)}	$V_{CC+} = \pm 9 \text{ V to } \pm 15 \text{ V},$ $V_{O} = 0$	$R_S = 50 \Omega$,	80	100		dB
Output short-circuit current				38		mA
Supply current	V _O = 0, No load	T _A = 25°C		4	8	mA
	Input offset voltage Input offset current Input bias current Common-mode input voltage range Maximum peak-to-peak output voltage swing Large-signal differential voltage amplification Small-signal differential voltage amplification Maximum-output-swing bandwidth Unity-gain bandwidth Input resistance Output impedance Common-mode rejection ratio Supply voltage rejection ratio (ΔVCC/ΔVIO) Output short-circuit current	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \text{Input offset voltage} & V_O = 0, \\ R_S = 50 \ \Omega & T_A = \text{Full range} \\ \hline T_A = 25^\circ \text{C} \\ \hline T_A = \text{Full range} \\ \hline T_A = 25^\circ \text{C} \\ \hline T_A = \text{Full range} \\ \hline T_A = 25^\circ \text{C} \\ \hline T_A = \text{Full range} \\ \hline T_A = 25^\circ \text{C} \\ \hline T_A = \text{Full range} \\ \hline \hline T_A = 25^\circ \text{C} \\ \hline T_A = \text{Full range} \\ \hline \hline T_A = 25^\circ \text{C} \\ \hline T_A = \text{Full range} \\ \hline \hline Common-mode input voltage range} \\ \hline \\ \text{Maximum peak-to-peak output voltage swing} \\ \text{Maximum peak-to-peak output voltage swing} \\ \text{Large-signal differential voltage amplification} \\ \text{Small-signal differential voltage amplification} \\ \text{Small-signal differential voltage amplification} \\ \text{Small-signal differential voltage amplification} \\ \text{Maximum-output-swing bandwidth} \\ \hline \\ \text{V}_O = \pm 10 \ \text{V} \\ \hline \\ \text{V}_C = \pm 18 \ \text{V}, \\ \hline \\ \text{R}_L \ge 600 \ \Omega, \\ \hline \\ \text{C}_C = 22 \ \text{pF} \\ \hline \\ \hline \\ \text{V}_O = \pm 14 \ \text{V}, \\ \hline \\ \text{C}_C = 22 \ \text{pF} \\ \hline \\ \text{Unity-gain bandwidth} \\ \hline \\ \text{C}_C = 22 \ \text{pF}, \\ \hline \\ \text{C}_L = 100 \ \text{pF} \\ \hline \\ \text{Input resistance} \\ \hline \\ \text{Output impedance} \\ \hline \\ \text{Common-mode rejection ratio} \\ \hline \\ \text{Supply voltage rejection ratio } (\Delta V_{CC}/\Delta V_{IO}) \\ \hline \\ \text{V}_O = 0, \\ \hline \\ \text{R}_S = 50 \ \Omega, \\ \hline \\ \text{V}_C = \pm 9 \ \text{V to } \pm 15 \ \text{V}, \\ \hline \\ \text{R}_S = 50 \ \Omega, \\ \hline \\ \text{V}_O = 0 \\ \hline \\ Change of the control of the contr$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range is $T_A = 0^{\circ}C$ to $70^{\circ}C$.



operating characteristics, $V_{\mbox{CC}}\,\pm$ = ± 15 V, $T_{\mbox{A}}$ = $25^{\circ}\mbox{C}$

PARAMETER		TEST CONDITIONS	NE5534	NE5534A		UNIT
		TEST CONDITIONS	TYP	MIN TYP	MAX	UNII
SR	Slew rate at unity gain	C _C = 0	13	13		V/μs
SK		C _C = 22 pF	6	6		
	Rise time	$V_{I} = 50 \text{ mV}, \qquad A_{VD} = 1,$ $R_{L} = 600 \Omega, \qquad C_{C} = 22 \text{ pF},$	20	20		ns
t _r	Overshoot factor	C _L = 100 pF	20	20		%
	Rise time	$V_{ } = 50 \text{ mV}, \qquad A_{ } = 1,$ $R_{ } = 600 \Omega, \qquad C_{ } = 47 \text{ pF},$	50	50		ns
t _r	Overshoot factor	$R_L = 600 \Omega$, $C_C = 47 pF$, $C_L = 500 pF$	35	35		%
\	Equivalent input noise voltage	f = 30 Hz	7	5.5	7	->//s/I-
Vn		f = 1 kHz	4	3.5	4.5	nV/√Hz
Γ.	Equivalent input noise current	f = 30 Hz	2.5	1.5		- A (/ I I =
l _n		f = 1 kHz	0.6	0.4		pA/√Hz
F	Average noise figure	$R_S = 5 \text{ k}\Omega$, $f = 10 \text{ Hz to } 20 \text{ kHz}$		0.9		dB

TYPICAL CHARACTERISTICS[†]

NORMALIZED INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

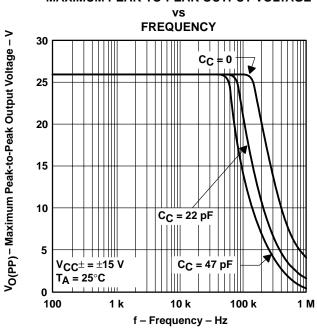
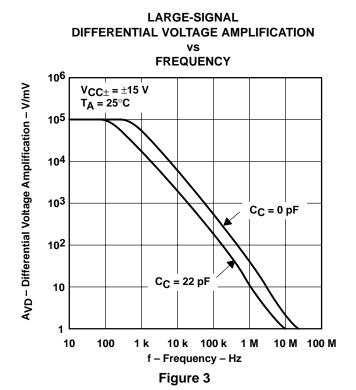
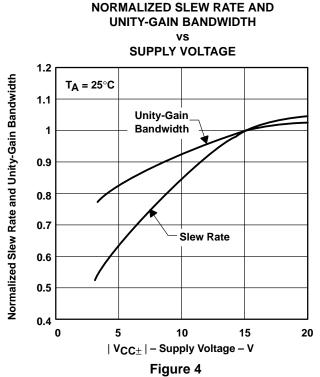
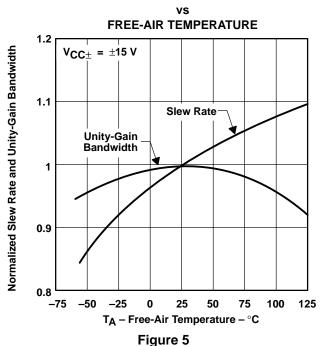
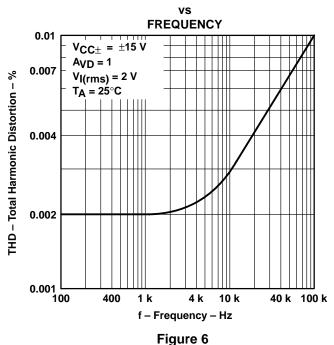




Figure 2


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]



NORMALIZED SLEW RATE AND UNITY-GAIN BANDWIDTH

TOTAL HARMONIC DISTORTION

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

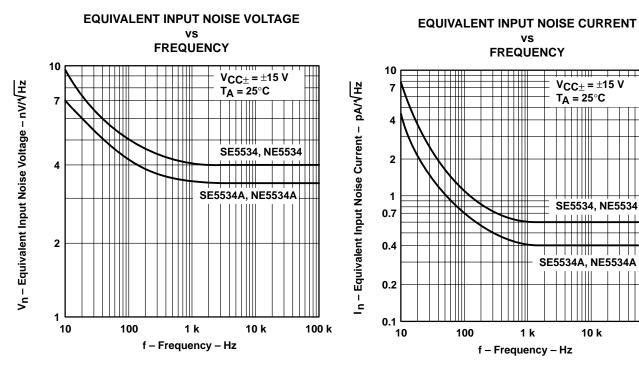
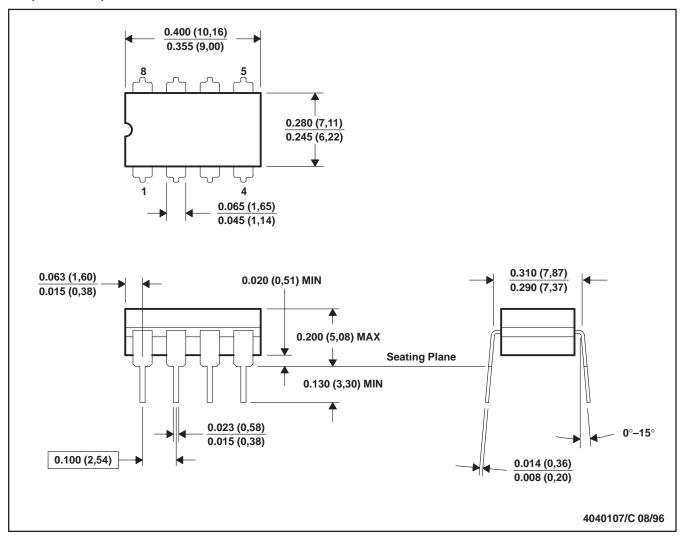


Figure 7 Figure 8

TOTAL EQUIVALENT INPUT NOISE VOLTAGE

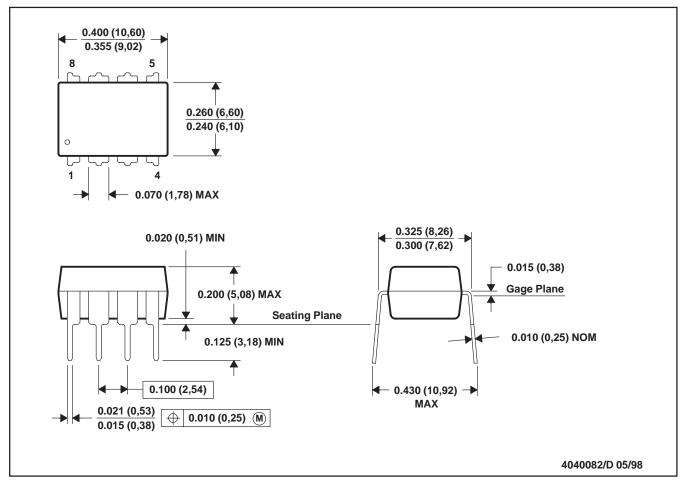

SOURCE RESISTANCE 100 $V_{CC\pm} = \pm 15 \text{ V}$ 70 Total Equivalent Input Noise Voltage – μV T_A = 25°C 40 20 10 7 4 f = 10 Hz to 20 kHz 2 1 0.7 0.4 f = 200 Hz to 4 kHz 0.2 0.1 100 10 k 100 k 1 M

 R_S – Source Resistance – Ω Figure 9

100 k

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE



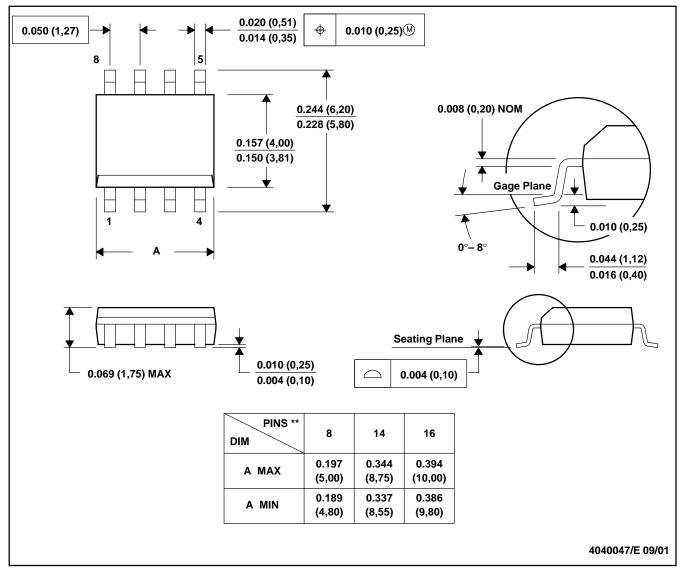
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

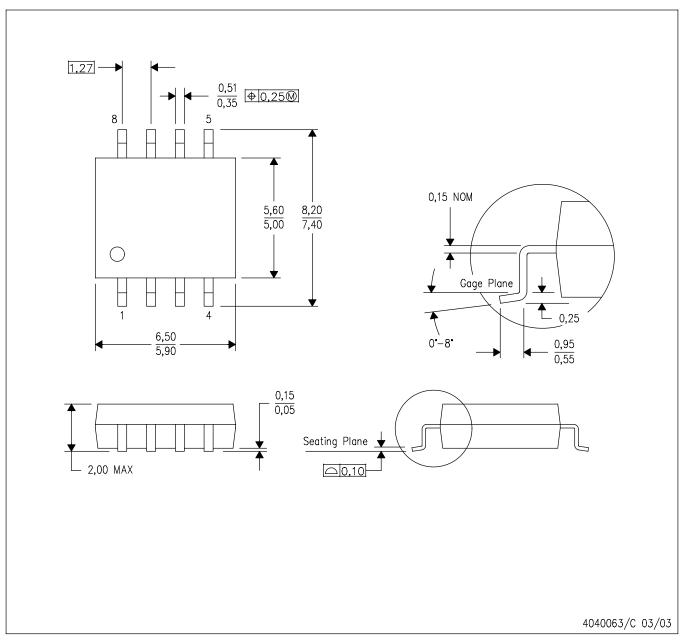

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated