Power MOSFET 25 Amps, 60 Volts P-Channel D²PAK

Designed for low voltage, high speed switching applications and to withstand high energy in the avalanche and commutation modes.

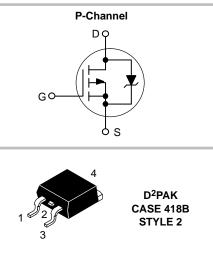
Typical Applications

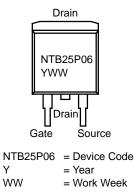
- PWM Motor Controls
- Power Supplies
- Converters
- Bridge Circuits

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit	
Drain-to-Source Voltage	V _{DSS}	60	Vdc	
Gate-to-Source Voltage				
- Continuous	V _{GS}	±15	Vdc	
 Non-Repetitive (t_p≤10 ms) 	V _{GSM}	±20	Vpk	
Drain Current				
- Continuous @ T _A = 25°C	I _D	25	Adc	
- Single Pulse ($t_p \le 10 \ \mu s$)	I _{DM}	75	Apk	
Total Power Dissipation @ T _A = 25°C	PD	100	W	
Operating and Storage	T _J , T _{stg}	- 55 to	°C	
Temperature Range	3	+150		
Single Pulse Drain-to-Source Avalanche	E _{AS}	600	mJ	
Energy - Starting T _J = 25°C				
$(V_{DD} = 25 \text{ Vdc}, V_{GS} = 10 \text{ Vdc},$				
$I_{L(pk)} = 20 \text{ A}, L = 3 \text{ mH}, R_G = 25 \Omega$				
Thermal Resistance			°C/W	
- Junction-to-Case	$R_{\theta JC}$	1.25		
- Junction-to-Ambient (Note 1)	$R_{\theta JA}$	46.8		
- Junction-to-Ambient (Note 2)	$R_{\theta JA}$	63.2		
Maximum Lead Temperature for Soldering	TL	260	°C	
Purposes, 1/8" from case for 10 seconds				

1. When surface mounted to an FR4 board using 1" pad size (Cu Area 1.127 in²).

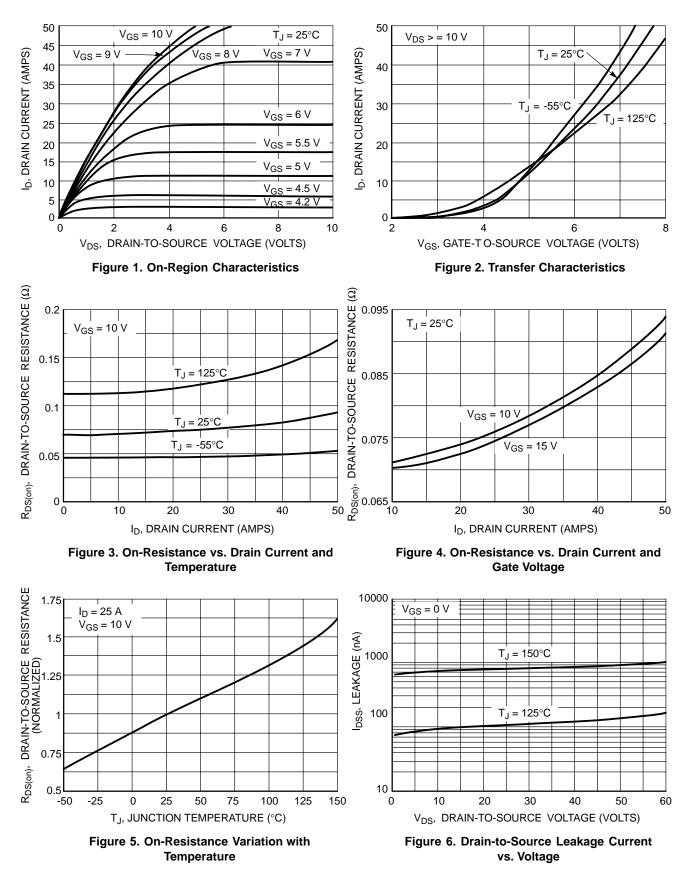

 When surface mounted to an FR4 board using the minimum recommended pad size (Cu Area 0.412 in²).

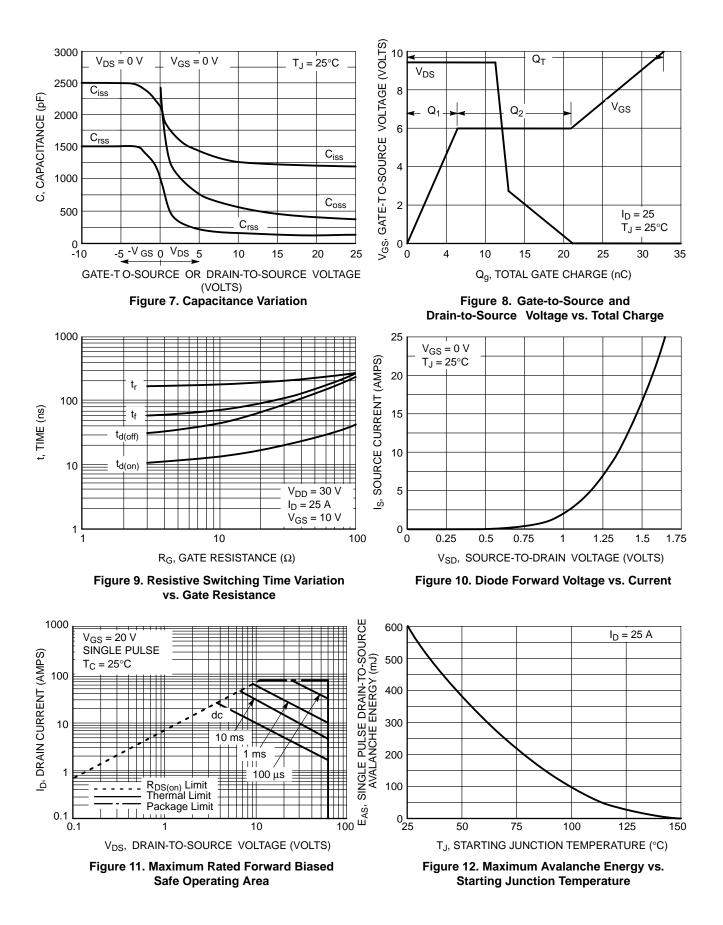

ON Semiconductor®

http://onsemi.com

25 AMPERES 60 VOLTS R_{DS(on)} = 65 mΩ @ Vgs = 10 V (Typ)

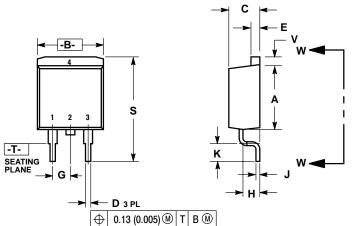
MARKING DIAGRAM & PIN ASSIGNMENT


ORDERING INFORMATION

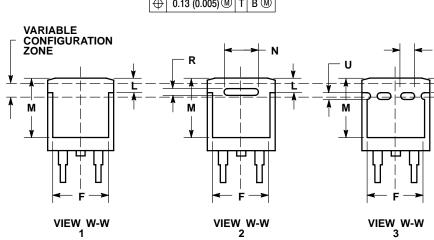

Device	Package	Shipping	
NTB25P06	D ² PAK	50 Units/Rail	
NTB25P06T4	D ² PAK	800/Tape & Reel	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

C	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown V (V _{GS} = 0 Vdc, I _D = 250 μAdc (Positive Temperature Coeffi	V _{(BR)DSS}	60 -	- 64		Vdc mV/°C	
Zero Gate Voltage Drain Current ($V_{GS} = 0 \text{ Vdc}, V_{DS} = 60 \text{ Vdc}, T_J = 25^{\circ}\text{C}$) ($V_{GS} = 0 \text{ Vdc}, V_{DS} = 60 \text{ Vdc}, T_J = 150^{\circ}\text{C}$)		I _{DSS}			10 100	μAdc
Gate-Body Leakage Current (\	I _{GSS}	-	-	±100	nAdc	
ON CHARACTERISTICS (Note 3	3)					
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$ (Negative Threshold Temper	V _{GS(th)}	2.0	2.8 6.2	4.0	Vdc mV/°C	
Static Drain-Source On-State ($V_{GS} = 10$ Vdc, $I_D = 12.5$ Add ($V_{GS} = 10$ Vdc, $I_D = 25$ Adc)	R _{DS(on)}		0.065 0.070	0.075 0.082	Ω	
Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 12.5 \text{ Add})$	gFS	-	13	-	Mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	1200	1680	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc},$	C _{oss}	-	345	480	
Reverse Transfer Capacitance	F = 1.0 MHz)	C _{rss}	-	90	180	
SWITCHING CHARACTERISTIC	CS (Notes 3 & 4)					
Turn-On Delay Time		t _{d(on)}	-	14	24	ns
Rise Time	1	t _r	-	72	118	25
Turn-Of f Delay Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 25 \text{ A}, V_{GS} = 10 \text{ V R}_G = 9.1 \Omega)$	t _{d(off)}	-	43	68	120
Fall Time		t _f	-	190	320	70
Gate Charge	(V _{DS} = 48 Vdc, I _D = 25 Adc, V _{GS} = 10 Vdc)	Q _T	-	33	50	nC
		Q ₁	-	6.5	-	
		Q ₂	-	15	-	
BODY-DRAIN DIODE RATINGS	(Note 3)					
Diode Forward On-Voltage	$(I_{S} = 25 \text{ Adc}, V_{GS} = 0 \text{ V})$ $(I_{S} = 25 \text{ Adc}, V_{GS} = 0 \text{ V}, T_{J} = 150^{\circ}\text{C})$	V _{SD}	-	1.8 1.4	2.5 -	Vdc
Reverse Recovery Time	(I _S = 25 A V _{GS} = 0 V, dI _S /dt = 100 A/μs)	t _{rr}	-	70	-	ns
		t _a	-	50	-	
		t _b	-	20	-	
Reverse Recovery Stored Cha	Q _{RR}	-	0.2	-	μC	


Indicates Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

PACKAGE DIMENSIONS


D²PAK CASE 418B-04 ISSUE H

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
E	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
ĸ	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
м	0.280	0.320	7.11	8.13	
N	0.197 REF		5.00 REF		
Р	0.079 REF		2.00 REF		
R	0.039	REF	0.99 REF		
S	0.575	0.625	14.60	15.88	
v	0.045	0.055	1.14	1.40	

Style 2: Pin 1. gate 2. drain 3. source 4. drain

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.