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1.0 INTRODUCTION

Distributed control of servo motors has a wide range of
applications including industrial control, factory auto-
mation and robotics. The tasks involved in controlling a
servo motor include position and velocity measure-
ment, implementation of control algorithms, detection
of overrun and stress conditions, and communication
back to a central controller. The 80C196KB high per-
formance microcontroller provides a low cost solution
for handling these required control tasks.

The 80C196KB microcontroller is a highly integrated
and high performance member of the MCSÉ-96 family.
The part is available in ROM (83C196KB) and
EPROM (87C196KB) versions. A block diagram of the
80C196KB is shown in Figure 2. The availability of a
variety of on board peripherals such as timer/counters,
A/D, PWM, Serial Port and High Speed Input and
Output capture/compare timer subsystem provides for
a flexible architecture for control applications at a rea-
sonable cost.

270701–1

Figure 1. Control Tasks for Distributed Control of a Servo Motor

270701–2

Figure 2. 80C196KB Block Diagram
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This application note describes several different meth-
ods for motor control using the on board peripherals of
the 80C196KB. Hardware and Software techniques are
addressed to generate PWMs for driving motors and to
measure position from the output of precision optical
encoders.

A Proportional, Integral and Differential (PID) algo-
rithm controls both the position and velocity of the mo-
tor. The PID algorithm employs proportional, integral
and differential feedback to control the system charac-
teristics of the motor. The motor can be moved either
manually or under the control of a velocity profile. The
mode used to position the motor is determined by com-
mands received from a master controller.

Communication to the master controller was imple-
mented using the onboard serial port of the 80C196KB.
The application of distributed control to position and
program a six axis robot arm using six separate motors
will be described. Each 80C196KB motor controller
acts as a slave under control of the master. An IBM PC
was selected as the master controller for the robot. Tur-
bo Prolog was used to develop the human interface. A
robot programming language and control screen was
produced to program movements of each individual
motor.

The motor control hardware, taking full advantage of
the peripheral features of the 80C196KB, will be dis-
cussed first. The control software will be discussed lat-
er.

2.0 HARDWARE

The hardware tasks required to control a servo motor
under the command of a centralized controller include
the following:

1) Feedback of the motor position and direction.

2) Control of the motor speed and direction.

3) Detection of motor overrun conditions.

4) Communication from/to a master controller.

Two different hardware interface examples for control-
ling a servo motor are shown in Figures 3 and 4. The
first example controls one motor using TIMER2 and
the dedicated PWM unit on the 80C196KB and would
best fit a high performance, high resolution application.
Example number 2 uses the HSI (High Speed Inputs)
and the HSO (High Speed Outputs) to control two mo-
tors. The second method can control up to four motors
by trading off some performance and resolution.

This section deals with the hardware and software re-
quirements of acquiring position feedback from incre-
mental shaft encoders and generating outputs to drive
DC servo motors. A current limiting circuit which is
useful in determining when the motor has stalled is also
presented. Current monitoring can also control the
torque to prevent the motor from crushing an object.
The closed loop digital control algorithms are discussed
in the software section.

2.1 Optical Encoders

Optical encoders can be used to measure the position of
rotating equipment. They provide a cost effective solu-
tion for digital position and velocity feedback to a mi-
crocontroller. Encoders produce two pulse trains which
give an incremental position count. Velocity and accel-
eration may be calculated by measuring the number of
counts in a given sample period. Or, in a slow speed
system, velocity and acceleration can be measured di-
rectly from the time between edges of the pulse train.
Acceleration and velocity calculations are discussed in
detail in the software section.

270701–3

Figure 3. Block Diagram of Motor Control Hardware using PWM and TIMER2
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270701–4

Figure 4. Block Diagram of Motor Control Hardware using HSO and HSI

Pulse trains from an encoder can vary from two pulses
per revolution for low cost applications, to over 5000
pulses per revolution for high resolution requirements.
Figure 5 shows an eight line encoder along with the
associated waveforms. A small amount of external logic
and a few discrete components decode a position count
and a direction indication from phase A and phase B.

External logic for encoders is shown in Figure 6. Figure
7 shows a timing diagram of the circuit. Bold type de-
notes the input and desired output waveforms. The
phases from an encoder are mechanically produced
electrical signals. When the motor rotates slowly, the
phases inherently exhibit slow rise and fall times. The
four Schmitt triggers in the circuit protect against oscil-
lation in the digital circuit due to these long rise and
fall times.

270701–5

Inside track generates Phase A and outside track generates Phase B

Figure 5. Eight Line Encoder
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U1 e 74HC14
U2 e 74HC86
U3 e U4 e 74HC74 270701–6

Figure 6. External Logic for Encoders

270701–7

Figure 7. Timing Diagram for Logic Circuit

A simple one-shot is constructed with an RC circuit
and an XOR gate to generate a pulse on each edge of
each phase. ASHOT clocks phase B and BSHOT clocks
phase A. This technique of digital filtering insures re-
petitive edges on a single phase without an edge on the
other phase are not passed on to the processor. Repeti-
tive edges occur when the motor changes direction.

Further logic obtains a direction or UP/DN bit. Note
the first edge after a direction change is lost. A lost
edge does not affect the count since the first transition
is lost in both directions. Since an edge is lost in each
direction, the circuit has an absolute resolution of one
edge.
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2.2 Interfacing to TIMER2

COUNT indicates an incremental position count on
both its rising and falling edge. TIMER2 on the
80C196KB is a 16 bit externally clocked up/down
counter clocked on the rising and falling edge of its
input signal. A one or zero on port pin 2.6 determines
whether TIMER2 counts up or down. By interfacing
an optical encoder to TIMER2 as shown in Figure 8,
an up/down counter is realized. No software interven-
tion is required to keep track of position or direction
changes with the 16 bit TIMER2. The CPU is free to
concentrate on executing the control algorithm.

270701–8

Figure 8. TIMER2 and Encoder

Interface Circuitry

For designs requiring greater resolution, a 32-bit up/
down counter may be realized with the same circuit
and minimal software overhead. TIMER2 can cause an
interrupt on an overflow condition. However, an over-
flow interrupt is not the safest way to implement a 32-
bit up/down counter. Repetitive overflow interrupts
could happen when the motor oscillates about a posi-
tion where the LSW (Least Significant Word) is zero,
or TIMER2 keeps overflowing and underflowing. For
this method, the total software overhead required for a
32-bit up/down counter is dependent on the position
and set point of the motor and would be difficult to
predict.

A much better way to implement a 32-bit up/down
counter is shown in Figure 9. TIMER2 is only read at
the beginning of the control algorithm, or once a sam-
ple time. This does not present an accuracy problem for
a digital control algorithm. TIMER2 is read into a tem-
porary register. The temporary value is then subtracted
from TIMER2, rather than clearing TIMER2, ensuring
no counts will be missed. The 16-bit temporary value is
sign extended to form a two’s complement 32-bit value
and added to the old 32-bit position value to form the
current position value. This 32-bit up/down counter
provides the accuracy needed for a control loop while
keeping software overhead constant under all condi-
tions.

A Pittman motor with a Hewlett Packard HEDS - 5310
512 line incremental shaft encoder was interfaced to
TIMER2. Even at a maximum shaft rotation of 6000

270701–9

Figure 9. Control Algorithm for TIMER2

RPM, the edges are only clocked into TIMER2 at a
period of about 5ms.

(6000 R/M) * (1/60 M/SEC) * (512 LINE) * (4 EDGES/LINE) e

204,800 edges per second

TIMER2 has a minimum transition period of once a
state time, or 167 ns @ 12 Mhz, in the fast increment
mode. Obviously, much higher resolutions and speeds
may be obtained.

2.3 Interfacing to the HSI

The HSI can interface more than one motor to the
80C196KB. COUNT is input into an HSI pin which is
configured to recognize events on both the rising and
falling edge of its input signal. UP/DN is input to a
port pin to determine direction. Up to four motors can
be interfaced to the 80C196KB using the four input
pins of the HSI. The disadvantage of using the HSI is
an ISR (Interrupt Service Routine) must be executed
on each edge. Considerable software overhead could oc-
cur if edges are clocked into the HSI faster than about
one every 150ms.

Two Pittman motors with 2 line encoders were inter-
faced to the HSI to generate two 32-bit up/down coun-
ters as an example. With both motors turning at a max-
imum velocity of 6000 RPM, an edge will occur every
625ms. The ISR in Figure 10 processes the edges from
the encoders and updates the position values and exe-
cutes in about 15ms @ 12 MHZ on the 80C196KB.
This still allows 97.6% (1 b 15/1250) of the total pro-
cessing time to implement control algorithms and other
I/O functions.
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270701–10

Figure 10. HSI Interrupt Service Routine

The HSI approach does add flexibility. Since the HSI
records a TIMER1 value with each transition, velocity
and acceleration can be calculated on every edge.

2.4 Driving a DC Servo Motor

Figure 11 shows the circuit used to drive the motors. A
digital output from the 80C196KB is converted into an
analog signal capable of driving a DC servo motor.
POWER is a PWM output from the 80C196KB. DI-
RECTION is a port bit which qualifies the a15 or
b15 supply. A signal diagram is shown in Figure 12.
Isolation between the motor power supply and the digi-
tal supply is provided by the two optical isolators pre-
venting any inductive glitches caused by the motor
turning on and off from effecting the digital circuit. The
optical isolators in turn drive the two VFETs. Size of

the VFETs was determined by the current specifications
of the motors. Heat sinks were used to protect the
VFETs. The VFETs are protected from voltage spikes by
the MOV, (Metal Oxide Varistor), a type of transient
absorber.

2.5 Using the Dedicated PWM Output

The PWM output unit on the 80C196KB is an 8 bit
counter which increments every state time. The output
is driven high when the counter equals zero and driven
low when the counter matches the value in the PWMÐ
CONTROL register. Typical PWM waveforms are giv-
en in Figure 13. A prescaler can allow the PWM coun-
ter to increment every two state times. With a 12 Mhz
crystal, the PWM has a fixed output frequency of 23.6
Khz, or 11.8 Khz with the prescaler enabled.

6
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270701–11
U3 e 7438
U4 e U5 e OC1H11A1
N e IR533 HEXFET
P e IR9533 HEXFET
M e Z47A7 MOV

Figure 11. Motor Drive Circuitry

270701–12

Figure 12. Motor Drive Waveforms

Duty PWM

Cycle Register

0% 00

25% 64

50% 128

90% 230

99.6% 255

Output Waveform

270701–13

Figure 13. PWM Output Waveforms
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The PWM unit along with pin 2.7 was used to drive
one motor at a fixed output frequency of 23.6 Khz. By
driving the motor at this frequency, motor whine in the
audible range was eliminated. Note that a 00 value in
the PWM register applies full power to the motor; the
desired 8 bit output value must be inverted before it is
loaded into the PWMÐCONTROL register to obtain
the correct output.

2.6 Using the HSO to Generate PWMs

The HSO (High Speed Outputs) of the 80C196KB can
generate up to four PWMs. The HSO triggers events at
specified times based on TIMER1 or TIMER2. For the
specific purpose of generating PWMs, the event is driv-
ing an output pin high or low. HSO commands are
loaded onto the CAM, (Content Addressable Memory),
which specify the time and event to take place. The
CAM is eight positions deep. The HSO triggers the
event on a successful compare with the associated tim-
er.

The 80C196KB can optionally lock commands onto
the CAM. This feature is very useful for generating
PWMs using TIMER2 as the time base. Figure 14
shows an example of two PWM outputs using locked
commands in the CAM. TIMER2 is clocked externally
at a frequency which determines the resolution of the
PWMs. TIMER2 can be clocked at a maximum fre-
quency of once every eight state times (1.33ms @ 12
Mhz) when used with the HSO. The RESET TIMER2
@ T4 command specifies the output frequency of the
PWMs. By changing the external TIMER2 clock fre-
quency and the value of T4, the HSO can generate a
wide range of PWMs.

T0 and T1 specify when the output pins will be driven
low. By varying T0 and T1, the duty cycle of the output
waveforms are changed. Both pins are driven high by
the same command at the same time TIMER2 is reset.
Since there are still four positions open in the CAM,
two more PWMs could be generated and one position
would still be left open in the CAM.

For this ap-note, two Pittman motors were controlled
using the HSO along with port pins 2.6 and 2.7. It was
desired to keep the output frequency the same as the
output frequency of the on-board PWM. To accomplish
this, TIMER2 was clocked every 8 state times and reset
when it reached 31 counts. This makes the output fre-
quency 23.6 Khz @ 12 Mhz with 5 bits of resolution.
CLKOUT was externally divided by 16 and input into
TIMER2. Since TIMER2 counts on both the positive
and negative edge of its input signal, a square wave
with a 16 state period clocks TIMER2 every 8 state
times.

The ISR used to load commands onto the CAM is
shown in Figure 15. When the control algorithm deter-
mines an output has changed, a RESET TIMER2 com-
mand gets loaded onto the CAM to generate an inter-
rupt. The interrupt vectors to this routine and updates
the CAM. To clear a locked entry from the CAM, the
entire CAM must be flushed by setting IOC2.7. Care
must be taken to reload all of the commands. This in-
cludes any commands not locked on the CAM.

7

6

5

4

3 RESET TIMER2 @ T4

2 SET HSO.0 & 1 HIGH @ T4

1 SET HSO.1 LOW @ T1

0 SET HSO.0 LOW @ T0

HSO CAM

270701–14

Figure 14. Two PWMs Using HSO Locked Entries
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270701–15

Figure 15. HSO Interrupt Service Routine

There is the potential for commands to be missed when
they are flushed and reloaded on the CAM. For exam-
ple, an HSO command is loaded on the CAM to clear
HSO pin 3 when TIMER2 e 23 and the CAM is
flushed when TIMER2 e 22. A new HSO command is
then loaded onto the CAM to clear HSO.3 when TIM-
ER2 e 21. This command will not execute until TIM-
ER2 is cleared and counts back up to 21. Missed com-
mands are difficult to avoid without excessive software
overhead. Software must take missed commands into
account and minimize the effects on the application.

The ISR in Figure 15, insures if an output edge is
missed for one period of TIMER2, the HSO pin will
remain high. A logical one applies no power to the mo-
tor. Also, at the end of the routine a sanity check makes
sure TIMER2 is not greater than 31.

2.7 Current Limiting

When a motor is stalled, or excessively loaded, it will
draw a lot of current. Current limiting can be used to
keep the motor from damaging itself, or anything in its
path. Several options exist to the user on what to do
about a high current condition. Less power could be
applied, or the motor could shut off entirely. This sec-
tion only explains how to recognize a high current con-
dition in a DC servo motor, not what to do about it.

Figure 16 shows a way to convert the current from the
motor into a voltage which can be read by the
80C196KB onboard A/D converter. Again, an opto-
isolator keeps the motor and digital power supplies sep-
arate. When enough current flows through the opto-
isolator, the A/D input voltage will drop down to
about .7 volts. The current to the opto-isolator is varied
by changing the values of the two resistors, R1 and R2
which split the current flow. By changing R1 and R2,
this circuit can be adjusted to work properly with dif-
ferent motors and load conditions.

9
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270701–16

Figure 16. Current Sensing Circuitry

Motor startup current must be considered when testing
for a high current condition. When a motor is started, it
will draw a great deal of current. This current surge can
last for a few milliseconds. Software must decide if the
motor is drawing excessive current because it is stalled,
or just starting. The section of code in Figure 17 exe-

cutes during the control algorithm. The current must
be above adÐlimit for 30 sample times before software
recognizes a high current condition. Of course, these
values must be adjusted up or down depending on the
motor and load conditions.

270701–17

Figure 17. Current Sensing Software
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270701–18

Figure 18. Software Block Diagram

3.0 SOFTWARE

A block diagram of the software is shown in Figure 18.
The software consists of a main program for hardware
and software initialization of the 80C196KB peripher-
als and programming of control tasks. The control
tasks include tracking the motor position and direction,
control of the motor speed and direction, detection of
overrun conditions and communication to the master
controller. After initialization is complete, the
80C196KB enters idle mode to preserve power while
not performing control tasks. Interrupt service routines
for the serial port, HSI, HSO and software timer per-
form the various control tasks.

The communication protocol to the main controller is
implemented in the serial receive and transmit routines.
Commands from the master controller move the motor
in one of two modes, manual or automatic, depending
on the command. The commands are listed in Figure
28.

Manual mode moves the motor clockwise or counter-
clockwise with a preset maximum control voltage ap-
plied. Manual mode commands include MOTOR UP,
MOTOR DOWN and STOP. The MOTOR UP and
MOTOR DOWN commands send the motor into man-
ual mode. The motor continues to run in the desired
direction until a STOP command is issued from the
master controller. The STOP command loads the desti-
nation position with the current position and enters au-
tomatic mode.

Automatic mode positions the motor using either a po-
sition or velocity PID algorithm. The position PID al-
gorithm is applied after reception of the STOP com-
mand or when the desired position is reached. The des-
tination position can be changed by a POSITION com-
mand from the master controller.

The maximum motor velocity and the destination posi-
tion are contained in the POSITION command. If the
maximum velocity is zero, a position PID is applied to
move the motor to the destination position. A non zero
maximum velocity will position the motor using a ve-
locity PID algorithm. Position and velocity input to the
algorithms are calculated based on position input from
the encoder.

Position information for the PID algorithms can be
provided by using the High Speed Inputs or TIMER2.
The HSI interrupt routine processes the direction and
position information incoming from the encoder to pro-
vide current motor position. Alternatively, TIMER2
directly measures the position when used as an up/
down counter. Velocity information can be calculated
using the position information given a constant sam-
pling rate. The position and velocity information are
used by the PID control algorithms.

The control algorithm uses a software timer interrupt
to generate the sampling rate of the control software.
The main portion of the software timer routine calcu-
lates the current position and velocity, senses the motor

11



AP-428

current for overrun conditions, calls the PID control
algorithm and generates the PWM control voltage to
the motor.

The speed of the motor can be controlled using the
PWM or the HSO. If the HSO is used, the HSO inter-
rupt routine generates a PWM output to control the
voltage applied to the motor. Otherwise, the PWM unit
controls the voltage applied to the motor.

Each of the major software routines is covered in detail
in this section.

3.1 Main Initialization Routine

The main initialization routine executes immediately
following reset to initialize the 80C196KB peripherals
and enable the interrupt driven control tasks. A flow
chart for the main initialization routine is shown in
Figure 19. The constants and variables for the control
algorithms and software routines are loaded into regis-
ter space for fast execution.

Next, the various peripherals are programmed to han-
dle the control tasks. The PWM for voltage control of
the servo motor is initialized. TIMER2 is programmed
as an up/down counter with T2CLK as the clock
source. The serial port is set to 19.2 Kbaud and pro-
grammed for mode 2 to receive incoming commands.
An A/D conversion is started to check for initial stress
conditions. Before the motor can be accurately posi-
tioned, an initial reference point must be established.

In order to find the reference point, an I/O port is
connected to a limit switch. The motor is driven in a
preset direction until the limit switch is activated. The
initial position is then loaded and position PID control
is applied to keep the motor stable. Position commands
from the master controller can now precisely position
the motor from the established reference point.

Finally, the software timer, timer overflow, receive and
transmit interrupt routines are enabled and the idle
mode is entered to conserve power. The routines will
execute as each individual interrupt control task re-
quires servicing. Discussion of the control tasks of each
software routine is contained in the following sections.

3.2 Software Timer Interrupt Routine

The software timer interrupt service routine executes
every 500 ms and determines the sampling rate of the
PID control algorithm. Figure 20 shows the flow chart
for the software timer interrupt routine. The routine
determines the operating mode, calculates the current
velocity and position and tests for overrun of preset
boundary conditions and stress conditions.

270701–19

Figure 19. Motor Initialization Routine
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270701–20

270701–21

Figure 20. Software Timer Interrupt Routine

An A/D conversion compares the motor current to test
for a stress condition against a preset limit. Thirty con-
versions are done to average the motor current to pre-
vent a false trigger due to a large current surge when
the motor starts up. If the preset limit indicating a
stress condition is exceeded, the motor is stopped.

The motor is also stopped if the current position ex-
ceeds the preset boundary limits. In the case of the
robot, the movement of joints are limited to prevent
positions which may cause stress conditions or damage
the robot. The positioning of the robot is dependent on
the mode of operation.

13
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A manual flag is tested to determine if the automatic or
manual mode should position the motor. The manual
mode moves the motor either up or down with a preset
maximum motor control voltage until a STOP com-
mand is issued. The automatic mode positions the mo-
tor using either the position PID for accurate position-
ing or the velocity PID for long positioning.

The software timer interrupt routine calculates and
stores the current position and velocity of the motor for
use by the appropriate PID algorithm. The current ve-
locity is calculated given the sampling rate, the current
position and the previous position. The calculated ve-
locity and position information is stored in the
80C196KB register space for use by the PID algorithm
software.

Recall that either a position PID or a velocity PID
control algorithm will be executed depending on the
maximum velocity value passed by the master control-
ler. If the value is zero, a position PID is employed,
otherwise, the velocity profile is employed. The velocity
profile PID is ideal for large maneuvers while the posi-
tion PID is better for shorter movements or maintain-
ing the current position. The generated output from the
control algorithm is then loaded into the PWM control
register and a return is executed.

3.3 PID Control Algorithm

The algorithm used to control the angular position and
velocity of the motor is a common PID algorithm. The
algorithm uses proportional, integral and differential
feedback to control the output to a motor. The PID
algorithm controls the important system characteristics
of the motor: settling time, steady state error, and sys-
tem stability. Each term in the control algorithm affects
each system characteristic differently. A block diagram
of the PID algorithm is illustrated in Figure 21.

270701–22

Figure 21. Block Diagram of PID Algorithm

The PID algorithm consists of three terms: a propor-
tional term, integral term and differential term. The
proportional term drives the motor with an output di-
rectly proportional to the error between the desired and

measured position. The integral term consists of the
integral of the position errors multiplied by an integral
constant. The differential term is the change in error
multiplied by a differential constant. The sum of the
terms is then scaled to provide a control voltage to the
motor. The system characteristics of the motor are
tuned by the selection of appropriate constants.

The settling time, steady state error and system stability
are impacted by the amount of proportional gain select-
ed. To accurately control a small change in motor posi-
tion, a large gain is desired. Faster system response is
attained by selecting a large gain but at the cost of
greater overshoot and longer settling time. The effect of
varying loads on the motor makes proportional control
in itself inadequate because of system instability and
large steady state error.

Application of integral feedback drives the steady state
error to zero by increasing the output in response to a
steady state error. The integral term increases as the
sum of the steady state error increases causing the error
to eventually be driven to zero. The integral term, al-
though driving the steady state error to zero, can cause
overshoot and ringing if it is too large. This has the
undesirable affect of poorer system response. Applying
PI control works very well, however a faster system
response can be acheived by applying a PID algorithm.

System response can be improved by adding a differen-
tial term. Addition of this term improves the response
time by providing a output proportional to the rate of
change in error. When the motor has a large change in
error, the term produces a large output to the motor.
Therefore, the system responds faster to disturbances in
the system. Most of the system instability is caused by
too high of a differential constant. The size of the pro-
portional, integral and differential constants provide
tradeoffs to the desired system characteristics.

Selection of the three gain constants is critical in pro-
viding fast system response with good system charac-
teristics. A slightly modified PID algorithm controls
the motor which improves both the system response
and the system stability. Two modifications were made
to improve the control algorithm. First, the size of the
integral term was clamped to prevent instability caused
by an extremely large integral term which could occur
after a long time with large errors. Second, the integral
term was cleared when the error changed sign to fur-
ther improve the system stability. The PID control al-
gorithm is written in PL/M-96 for ease of development.

3.4 Position PID Software

The software flow chart for the PID algorithm is shown
in Figure 22. Upon entering the routine, the position
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270701–23

Figure 22. Position PID Algorithm
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error is checked for a minimum value before applying
the position PID algorithm. If the minimum position
error is exceeded, the maximum PWM output is ap-
plied to move the motor as rapidly as possible.

Current position error is added to the integral sum.
Position error and integral sum are tested to clear the
integral sum if they are opposite in sign. This improves
the system stability by preventing the integral term
from applying a correction opposite to the desired out-
put.

If the integral sum is greater than the maximum sum
allowed, the integral sum is clamped. This prevents the
integral sum from becoming too large if the error is
large for several samples. Differential error is then cal-
culated from the current and previous position errors.

Output for the PID algorithm is calculated from the
proportional, integral and differential terms multiplied
by their individual gain constants. The output is then
scaled and tested for the preset PWM output limit. If
the limit is exceeded, the output to the PWM is set to
the maximum value. The appropriate motor direction is
set depending on the sign of the output. The final out-
put to the PWM control is ready and the software re-
turns.

3.5 Velocity Profile

Positioning of a servo motor using only a position PID
algorithm wastes power and gives poor system perform-
ance when moving between two positions. A velocity
profile provides a smooth transition between two angu-
lar positions and improves the energy consumption of
the motor. Three different velocity profiles which can
be applied are trapezoidal, triangular and parabolic.

The parabolic profile is the most power efficient and
provides smooth acceleration and deceleration at the
end points. However, a large amount of processor time
is needed to calculate the profile in real time. The trian-
gular profile provides ease of calculation versus the par-
abolic but generates a rough transition at the peak of
the profile. A trapezoidal profile provides energy effi-
ciency, ease of calculation and relatively smooth accel-
eration and deceleration throughout the velocity pro-
file. For these reasons, the trapezoidal profile was se-
lected.

A trapezoidal profile consists of an acceleration period,
run period and deceleration period. The variables AC-
CELÐTIME, RUNÐTIME and ENDÐTIME repre-
sent the periods. Figure 23 shows the trapezoidal pro-
file. Acceleration and deceleration rates for the motor
are fixed according to the optimum values found
through testing. The master controller sends a position
command containing the maximum velocity
(MAXÐVELOCITY) and the desired end position
(DESÐPOSITION). The DESÐPOSITION is equal
to the integral of the velocity profile (i.e., the final posi-
tion can be determined by integrating the velocity over
the period of the profile. Therefore, the
ACCELÐTIME, RUNÐTIME and ENDÐTIME
can be calculated based on the DESÐPOSITION,
ACCELERATION, DECELERATION and
MAXÐVELOCITY.

The destination position should be reached if the veloci-
ty profile was ideally tracked. However, a certain
amount of position error can be expected as the motor
travels from one point to another. This error is elimi-
nated by applying the position PID at the end of the
velocity profile. This modified control algorithm has
both good motor performance and accurate angular po-
sitioning.

270701–24

Figure 23. Trapezoidal Velocity Profile
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3.6 Trapezoidal Profile Calculation

The trapezoidal velocity profile is calculated when a
position command with a nonzero maximum velocity is
passed from the master controller. The master passes
the desired end position and the maximum velocity of
the motor. A reasonable acceleration (deceleration) rate
was found through experimentation to be 1 position
count/sampling rate (500 ms). ACCELÐTIME,
RUNÐTIME and ENDÐTIME can be easily calcu-
lated given the relative acceleration rate of one, the end
position and the maximum velocity.

The acceleration and deceleration time is equal to the
maximum velocity since the acceleration/deceleration
rate is one. RUNÐTIME is the difference between the
desired position and current position minus the dis-
tance covered during the acceleration and deceleration
times. ENDÐTIME is the RUNÐTIME added to two
times the ACCELÐTIME. With the velocity profile
calculated, the velocity PID algorithm will be applied
until the ENDÐTIME is reached.

The velocity profile software generates the appropriate
velocity depending on the current time. Figure 24

shows the velocity profile generation software. The
TIME variable is incremented every software timer in-
terrupt at the sampling rate if it is less then the end
time (ENDÐTIME) of the profile. Three different ve-
locities are calculated during the profile. DESÐVE-
LOCITY equals the ACCELERATION multiplied by
the TIME until the ACCELÐTIME is reached. The
DESÐVELOCITY equals the maxiumum velocity un-
til the RUNÐTIME is exceeded. Once the
RUNÐTIME is exceeded, the velocity is equal to the
ACCELERATION (same as deceleration rate) multi-
plied by the TIME-CURRÐTIME. When the end of
the profile is reached (which is approximately the de-
sired end position), the time equals the ENDÐTIME
and the position PID controls the motor. If the maxi-
mum velocity passed by the master controller is zero,
the CURRENTÐTIME is set to the ENDÐTIME
and the position PID controls the motor.

The velocity control algorithm employs the PID algo-
rithm. The algorithm is similar to the position algo-
rithm used to control the position. The velocity control
algorithm is shown in Figure 25.

270701–25

Figure 24. Velocity Profile Generation Software
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270701–26

Figure 25. Velocity Control Algorithm

3.7 Fast Execution of Control
Algorithms

The high speed arithmetic operations capability, avail-
ability of three operand instructions and large register
space of the 80C196KB provide for fast execution of
control algorithms. The 80C196KB running at 12 Mhz
can execute a 16 c 16 Multiply in 2.3 ms and 32/16
divide in 4.0 ms. Three operand instructions operate on
two variables without modification and store the result
in the third variable. This eliminates the need for exe-
cuting load and store operations as required by accu-
mulator bound architectures. The large register space
can store all of the constants and variables for the con-
trol algorithm without the use of load and store opera-
tions. In addition, procedures do not need to pass pa-
rameters or store results since they can permanently
reside in register space.

A summary of the execution times for the main soft-
ware routines is shown in Figure 26.

Execution

Time

Software Timer Interrupt Routine 40 ms

PID Control Algorithms:

Velocity PID (PL/M-96/ASM-96) 300 ms/30 ms

Position PID (PL/M-96/ASM-96) 240 ms/40 ms

Velocity Profile Generation 71 ms

HSI Interrupt Processing 22 ms

HSO Generate PWM Routine 16 ms

Receive Interrupt and Command 26 ms
Processing

Transmit Interrupt Routine 11 ms

Figure 26. Execution Times for

Main Software Routines
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The HSI, HSO, Receive and Transmit Interrupt rou-
tines take a minimal amount of time. A majority of the
processing time is in executing the Software Timer in-
terrupt routine and either the Velocity PID or Position
PID control algorithms.

PID Control Algorithms take a considerable amount of
time since they are written in a high level language and
execute a number of thirty-two bit arithmetic opera-

tions. Thirty-two bit accuracy is not required since the
maximum position required to accurately track the mo-
tor is about twenty four bits. To optimize the control
algorithm for the accuracy required, the routines can be
written in assembly. A sample Position PID algorithm
is shown in Figure 27. The routine executes in about 30
ms by optimizing the control algorithm and minimizing
the number of 32-bit operations.

VPID: ld vel err3,vel err2 ; store velocity errors

ld vel err2,vel err1

ld vel err1,vel err

sub vel err,des velocity,velocity ; calculate velocity error

sub temp,vel err1,vel err2 ; calculate differential error term

mul temp,#3 ; diff err4(vel err1vel err303*vel err113*vel err2)

sub temp,vel err3

add temp,vel err

; Output4prev output 0 ((vel err1vel err1)*VKp0(Vel err0Vel err1)*Vki 0 diff err*Vkd))/

;scaler

OUTPUT: mul temp,Vkd ; calculate differential term

add temp2,vel err,vel err1

mul temp2,Vki ; calculate integral term

add temp,temp2

sub temp2,vel err,vel err1 ; calculate proportional term

mul temp2,Vkp

add temp,temp2

div temp,scaler ; scale output

add output,prev output,temp

ld prev output,output

div Out scaler ; Scale 32 bit output to get 16 bit result

jbc Out03,7,forward ; test output for direction

REVERSE: neg Out02 ; negate output

ldb p2,#07fh ; set direction down(p2.040)

sjmp scaleout

FORWARD: ldb p2,#0FFh ; set direction up(P2.041)

SCALEOUT: cmp Out,#0ffh ; scale output for maximum pwm value

jgt exit ; if Out l maximum pwm output

ld Out,#0ffh ; then clamp output to max pwm value

EXIT: ldb pwm,Out

ret

Figure 27. Position and Velocity PID Assembly Routine
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PID: add sum int, pos err ; sum position errors

div sum int,decay ; limit effect of old position errors

sub diff err, pos err ; differential error 4 (pos err 1 pos err1)/2

div diff err, #2

; Out 4 Kp*pos err 0 Ki*interr 0 Kd*differr

OUTPUT: mul Out pos err, Kp ; Calculate proportional term

mul temp, Ki interr ; Calculate integral term

add Out, temp ; add integral term to Output

addc Out02, temp02 ; 32 bit add to maintain full 32 bit accuracy

div Out, scaler ; Scale output

jbc Out03,7,forward ; test output for direction

REVERSE: neg Out02 ; negate output

ldb p2,#07fh ; set direction down (P2.740)

sjmp scaleout

FORWARD: ldb Port2,#0ffh ; set direction up(P2.741)

SCALEOUT: cmp Out,#0ffh ; scale output for maximum pwm value

jgtexit ; if Out l maximum pwm output

ld Out,#0ffh ; then limit output to maximum value

EXIT: ldb pwm, Out ; load pwm with Output value

ret

Figure 27. Position and Velocity PID Assembly Routine (Continued)

4.0 Distributed Control

Distributed control of servo motors requires the passing
of commands and data from a master to a slave. The
master passes commands to report position, start and
stop the motor, or position the motor to an exact loca-
tion using a position PID or velocity profile. The slave
needs to report current position and acknowledge in-
coming commands from the master. This protocol re-
quires addressing of slaves and the distinction between
incoming commands and transmission of data. The
80C196KB serial port provides a multiprocessor com-
munication mode for implementing the protocol.

The 80C196KB provides a ninth bit in Mode 2 and
Mode 3 that can assist communication between multi-
ple processors. If the received ninth bit is zero in mode

2, the serial port interrupt will not occur. Each motor is
initially programmed for this mode to distinguish re-
ceiving a command versus a data byte. With the ninth
bit set, indicating a command byte has been received,
all the slaves interrupt and process the incoming byte.
The address of the motor being controlled is embedded
in the command byte. All processors will process the
command byte if the motor address matches.

A motor receiving a poll command from the master
controller will enter mode 3. The polled motor then
receives the data bytes which are sent with the ninth bit
cleared. Therefore, only the processor receiving data
will interrupt for serial reception while the other proc-
essors await another command byte with the ninth bit
set. A list of available commands and the format for
each is shown in Figure 28.
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Command Table

Command Code Operation

Position 01 Position motor using either
position PID or Velocity
profile.

Poll 05 Polls motor for current
position.

Motor Up 08 Enters manual mode
turning motor clockwise.

Motor Down 09 Enters manual mode
turning motor counter
clockwise.

Stop 10 Exits manual mode setting
the desired position to the
current position.

Position Command

Command Position
Maximum

Velocity

01 4 bytes 2 bytes

Poll Command

Command Position

05 4 bytes

Figure 28. Master Commands and Format

4.1 Receive Interrupt Service Routine

Communication between the 80C196KB and the main
controller is handled by the serial port routine. Figure
29 shows the flow for the receive interrupt service rou-
tine. Upon reception of a byte from the main controller,
a receive interrupt will occur. The RI bit is tested to
ensure a byte has been received. If a byte has not been
received, an error is generated and a return from the
routine is executed. After a valid reception, the ninth
bit is tested to determine if the incoming byte is a com-
mand byte or incoming data sent after reception of a
POSITION command.

If the byte is a command byte, the motor address is
checked by each slave for its own address. The com-
mand byte is then echoed back to the master controller
by the appropriate slave. The routine is exited if the

command byte is not for the motor. Since each motor
has a unique address, only the motor receiving the com-
mand will respond. Reception of a POSITION com-
mand will switch the serial port to mode 3.

Desired position and maximum velocity is sent by the
master to each slave by a POSITION command. Re-
ceived data for the position command is stored in a
buffer. After all data has been received,
MAXÐVELOCITY and DESÐPOSITION is loaded
with the values stored in the buffer and the serial port is
switched back to mode 2.

Each command is then checked and appropriate action
taken depending on the received command. Commands
include POSITION, POLL, UP MOTOR, MOTOR
DOWN and STOP. The commands are summarized in
Figure 28.

4.2 Manual Positioning

The receive routine will check for one of three manual
commands: MOTOR UP, DOWN MOTOR or STOP.
A manual flag is used by the software determine if the
motor should be positioned using either a position or
velocity PID algorithm or by manual control. The mo-
tor up and motor down commands set the manual flag
which will cause the PWM control to be loaded with a
constant value during the software interrupt routine.
The direction port bit is set to the appropriate value
depending on whether the command is up or down.
The motor will continue to move up or down until a
STOP command is issued by the master controller or
the motor’s preset limits are reached.

A stop command will reset the manual flag and set the
controller in automatic mode which employs the PID
algorithm. The destination position gets loaded with
the current position and a return from the receive inter-
rupt is executed. The manual position mode is used by
the master controller to position the motor under key-
board or switch control. This is instead to precise posi-
tion control of the motor by sending a position com-
mand.

4.3 Motor Positioning

Either position control or a velocity profile can be used
to position each motor. The maximum velocity infor-
mation stored in the POSITION command determines
the type of method employed. If the maximum velocity
value is nonzero, the velocity PID algorithm will be
applied to position the motor. If the maximum velocity
is zero, position control using the PID algorithm will
be used. This provides for two alternative methods for
positioning the motor.
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Once a POSITION command is received, the processor
enters serial mode 3 to receive the incoming position
and maximum velocity information. The four bytes of
position data and two bytes of maximum velocity are
retrieved from a six byte storage buffer. A receive count
keeps track of the number of incoming bytes until all
bytes of the six byte frame have been received. If a
frame or overrun error occurs, the motor will shut off
and a 0FFH will be transmitted back to the master
controller to indicate an error condition has occurred.
Otherwise, an 88 is returned to indicate the valid trans-
mission of position and maximum velocity. The manual
flag will be turned off and the appropriate PID algo-
rithm will be applied on the next software interrupt.

4.4 Master Polling of Position

The master controller can poll each motor controller
for position with a poll command. After reception of
the poll command, a transmit buffer is loaded with four
bytes of position information. Each byte is then trans-
mitted using the transmit interrupt routine.

The flowchart for the routine is shown in Figure 30.
The routine simply tests the TI flag and continues to
transmit a byte from the buffer until the transmit count
goes to zero. After the count goes to zero, the transmis-
sion is complete and processing continues.

270701–29

Figure 29. Serial Port Receive Interrupt Routine
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270701–30

Figure 29. Serial Port Receive Interrupt Routine (Continued)
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270701–31

Figure 30. Serial Transmit Routine

5.0 DISTRIBUTED CONTROL OF A
SIX AXIS ROBOT

A six axis robot demonstration system was built using
distributed control of its six motors. The robot is a
RHINO XR-1 prototype robot designed by
SANDHU Machine Design Inc. Robot motors were
replaced with similar models with high resolution en-
coders. The robot allows movement along six joints:
base, shoulder, elbow, wrist, hand and fingers. Each
joint is connected to a motor. The system used an IBM
PC acting as a master controller.

The software used to develop the human interface was
Turbo Prolog and the Turbo Prolog Toolbox. The hu-
man interface allowed for the programming and move-
ment of the robot by individually controlling each joint
motor. The IBM PC controlled each axis of the robot
by passing commands serially.

The IBM PC provides a flexible master controller for
positioning the robot. There are a large number of soft-
ware languages for developing the control algorithms
and human interface of the master controller. Turbo
Prolog was selected for its low cost and ease of imple-
mentation. The control screen and robot programming
language were rapidly developed using the Turbo Pro-
log. The software and hardware implementation easily
provide for programming and controlling the robot
through a variety of repetitive tasks. A robot using this
control system could easily perform assembly or manu-
facturing tasks as shown in Figure 31.

5.1 Hardware Interface

The hardware interface to the robot is shown in Figure
32. Each major joint, elbow wrist, base and shoulder
were controlled with a single 80C196KB using the
PWM and TIMER2 as an up/down counter. The hand
and finger motors used the HSI to track position and
the HSO to generate PWM motor control voltages.

270701–32

Figure 31. Automated Assembly using Distributed Control
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Figure 32. Robot Control Hardware Block Diagram
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Switches on the robot were fed into 80C196KB I/O
ports to provide a reference position when each motor
starts up. Current sensing for each motor was fed back
to the analog channels to provide an indication of any
overrun or stress conditions. Limits were set for each
motor to prevent the robot joints from entering posi-
tions where obstacles or mechanical limitations were
reached.

Each motor was given a unique programming address
for communication back to the master controller. The
master controller sent commands with the address of
whichever joint motor needed to be positioned or
polled. The master 80C196KB communicated through
a UART to the IBM-PC.

5.2 Human Interface

To control the robot, the human interface provided a
variety of programming options.

The software features included:

Manual control via the keyboard
Editing robot command files
A Motor Control Command language
Table Display of motor position and status
Manual Programming mode
Table Positioning mode

The software front end developed only the basic fea-
tures of robotic control to demonstrate the distributed
control of servo motors.

5.3 Control Screen for the Robot

The screen for the control of the robot is shown in
Figure 33. The screen displays a table of the position
and status of each motor, shows the function keys used
to execute commands or enter different modes and dis-
plays the keyboard keys for moving each robot joint up
or down. The software has various modes for position-
ing and programming the robot.

5.4 Programmed Modes

The software provides for movement of the robot
through table entry, execution of include command
files or manually using the keyboard. The robot is posi-
tioned manually by entering the function key for manu-
al mode and then pressing the predefined key for each
joint motor to move up or down. As each key is re-
leased, a STOP command is issued to each motor. The
motors are then polled and the current position updat-
ed in the table.

The table function allows for direct entry of the desired
position and maximum velocity to position the motor
when the table function key (F1) is pressed. After the

Motor Position Maxval Status

Base 12345 0 STOPPED

Shoulder 13457 0 STOPPED

Elbow 00282 0 STOPPED

Wrist 00383 0 STOPPED

Hand 11228 0 STOPPED

Fingers 18484 0 STOPPED

Functions

F1 - Table F2 - Send

F3 - Manual F4 - Program

F5 - Edit F6 - Include

F7 - Home F8 - DOS

F9 - F10 - Exit

Manual Keys

Base Shoulder Elbow Wrist Hand Claw

Left Right Up Down Up Down Up Down Left Right Close Open

1 2 3 4 5 6 7 8 9 0 - e

Figure 33. Robot Control Screen
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key is pressed, individual positioning commands are
sent to each motor. With maximum velocity set to zero,
the motor is positioned using a position PID. A non-
zero maximum velocity would position the motor using
a velocity profile. The final method of positioning al-
lowed for the sending of commands (MOTOR UP,
MOTOR DOWN, STOP, POSITION or POLL) to
each joint in the robot from an include file.

The include mode function key (F6) executes com-
mands stored in a file. The command file can be entered
using an external editor or using the on board editor,
Turbo Prolog. A sample command file is shown in Fig-
ure 34. The command file allows for programming of
the robot through a sequence of programmed tasks.
The task of programming the robot is eased by a manu-
al program mode.

The manual program mode generates a command file
while manually positioning the robot. After pressing
the program key (F4), the program mode is entered and
the robot is moved by pressing the appropriate motion
key for each joint motor. When the robot stops, the
position of the robot is polled and translated into a
position command and stored in a file. As the pro-
grammed task is executed, each position of the robot
and the time delay between joint movements is record-
ed. When the task is complete, the file contains all the
stored position commands necessary to execute the pro-
grammed task. The file can be edited with by entering
the edit mode (F5) to fine tune the programmed task or
execute the command file directly. The manual pro-
gram, command file execution and editing modes allow
for a variety of robotic tasks to be developed and tested
easily.

6.0 CONCLUSION

Use of an 80C196KB in distributed control of servo
motors has been demonstrated with the effective utili-
zation of the onboard peripherals and high speed math
capability of the 80C196KB. The high performance and
integration of the 80C196KB minimized the hardware
interface. The task of controlling the motor resided in
the 80C196KB with the control algorithm residing in
the master. With this approach, the centralized control-
ler can be adapted to the performance requirements of
the system.

Although not implemented, a learn mode could be add-
ed to the robot to provide programming using AI tech-
niques. The IBM PC and Turbo Prolog software pro-
vided the demonstration vehicle for testing the control
of the robot using distributed control. Use of artificial
intelligence programming to position the robot could be
incorporated with the Turbo Prolog package. The ap-
plication of a vision system or a more complex control
algorithm could be realized without modification to the
hardware controlling the robot. A more cost effective
solution is obtained by replacing the IBM-PC with one
80C196KB or 80C186 acting as a master controller.

Repetitive tasks programmed using the robot command
language could be stored in tables in the master
80C196KB. The controller would send the stored com-
mands to each motor and communicate, through a seri-
al UART, to the rest of the manufacturing system. The
master 80C196KB controller would then report status
or receive commands. The choice of controller depends
on the needs of the system. Distributed control of servo
motors using the 80C196KB provides for maximum
flexibility in the selection of the control algorithm with-
out modification to the hardware control modules.

pos(3,4000,10) ; move elbow to position 4000 with maximum velocity of 10
time(10) ; delay 10 seconds
pos(1,1000,2) ; move shoulder to position 1000 with maximum velocity of 2
time(20) ; delay 20 seconds
pos(0,14000,5) ; move base to position 14000 with maximum velocity of 5

Figure 34. Sample Robot Command File
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