

Discrete POWER & Signal **Technologies**

NPDS8301 NPDS8302 NPDS8303

N-Channel General Purpose Dual Amplifier

Sourced from Process 83.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	40	V
V _{GS}	Gate-Source Voltage	40	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

General Purpose Dual Amplifier

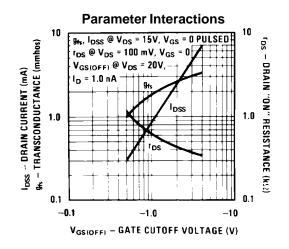
(continued)

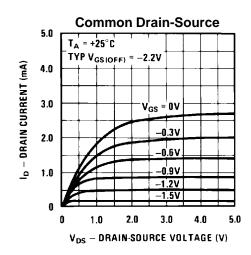
Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units	
OFF CHARACTERISTICS						
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 1.0 \mu\text{A}, V_{DS} = 0$	- 40		V	
I _{GSS}	Gate Reverse Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0$		100	pА	
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 20 \text{ V}, I_{D} = 1.0 \text{ nA}$	- 0.5	- 3.5	V	
V_{GS}	Gate-Source Voltage	$V_{DS} = 20 \text{ V}, I_D = 200 \mu\text{A}$	- 0.3	- 3.5	V	
		I .	1	1		

ON CHARACTERISTICS

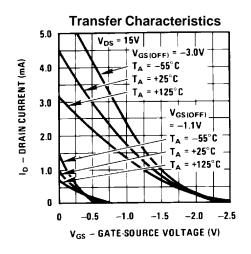

I _{DSS}	Zero-Gate Voltage Drain Current*	$V_{DS} = 20 \ V, V_{GS} = 0$	0.5	6.0	mA

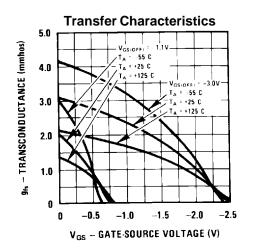

SMALL SIGNAL CHARACTERISTICS

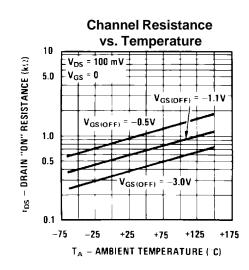
9fs	Common Source Forward Transconductance	$V_{DS} = 20 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$ $V_{DS} = 20 \text{ V}, I_{D} = 200 \mu\text{A},$	1000 700	4000 1200	μmhos μmhos
	Tansconductance	$V_{DS} = 20 \text{ V}, I_D = 200 \mu\text{A},$ f = 1.0 kHz	700	1200	μππος
goss	Common Source Output Conductance	$V_{DS} = 20 \text{ V}, I_D = 200 \mu\text{A}, f = 1.0 \text{ kHz}$		20	μmhos
gos	Common Source Output Conductance	$V_{DS} = 20 \text{ V}, I_{D} = 200 \mu\text{A},$ f = 1.0 kHz		5.0	μmhos
V _{GS1} - V _{GS2}	Differential Match	$V_{DG} = 20 \text{ V}, I_D = 200 \mu\text{A},$			
		NPDS8301		5.0	mV
		NPDS8302		10	mV
		NPDS8303		15	mV
ΔV_{GS1} - V_{GS2}	Differential Drift	$V_{DS} = 20 \text{ V}, I_{D} = 200 \mu\text{A},$			
		$T_A = 25 \text{ to } 85 ^{\circ}\text{C}$ NPDS8301		10	μV/°C
		NPDS8302		15	μV/°C
		NPDS8303		25	μV/°C

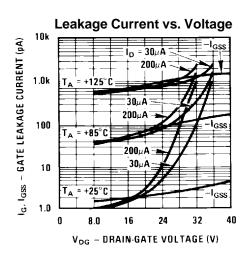
^{*}Pulse Test: Pulse Width \leq 300 ms, Duty Cycle \leq 2%

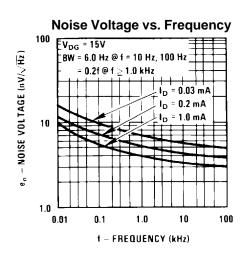
Typical Characteristics

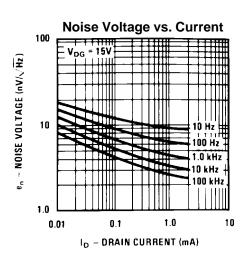


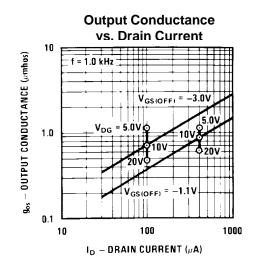


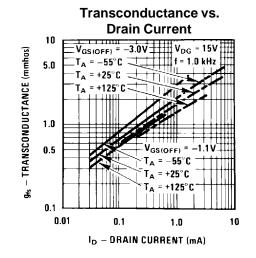

General Purpose Dual Amplifier

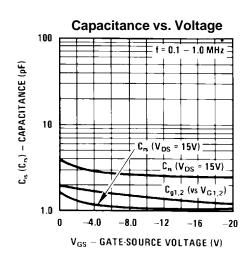

(continued)

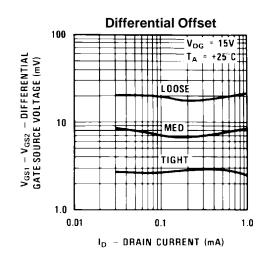

Typical Characteristics (continued)

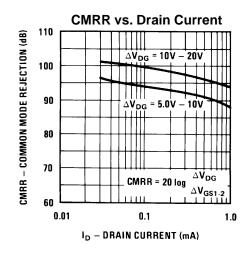







General Purpose Dual Amplifier


(continued)


Typical Characteristics (continued)

