

Discrete POWER & Signal Technologies

NPDS5565 NPDS5566

N-Channel General Purpose Dual Amplifier

Sourced from Process 96.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	40	V
V _{GS}	Gate-Source Voltage	40	V
I _{GF}	Gate Current	10	mA
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

- 1) These ratings are based on a maximum junction temperature of 150 degrees C.

 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

General Purpose Dual Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
	RACTERISTICS				
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 1.0 \mu\text{A}, V_{DS} = 0$	- 40		V
I _{GSS}	Gate Reverse Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0$ $V_{GS} = 20 \text{ V}, V_{DS} = 0, T_A = 150 \text{ °C}$		100 200	pA μA
$V_{GS(off)}$	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_{D} = 1.0 \text{ nA}$	- 0.5	- 3.0	V
$V_{GS(f)}$	Forward Gate-Source Voltage	$V_{DS} = 0$, $I_{D} = 2.0 \text{ mA}$		1.0	V
V _{G1 - G2}	Voltage Gate 1 - Gate 2	$V_{DS} = 0$, $I_G = + / - 1.0 \mu\text{A}$	+/-40		V
	RACTERISTICS	IV 45 V V 0	F 0	20	A
I _{DSS}	Zero-Gate Voltage Drain Current*	$V_{DS} = 15 \text{ V}, V_{GS} = 0$	5.0	30	mA
r _{DS(on)}	Drain-Source On Resistance	$I_D = 1.0 \text{ mA}, V_{GS} = 0$		100	Ω
	IGNAL CHARACTERISTICS Common Source Forward	V _{DS} = 15 V, I _D = 2.0mA, f = 1.0 kHz	7500	12,500	μmho
SMALL S gfs		$V_{DS} = 15 \text{ V}, I_D = 2.0 \text{mA}, f = 1.0 \text{ kHz}$ $V_{DS} = 15 \text{ V}, I_D = 2.0 \text{ mA},$ f = 100 MHz	7500 7000	12,500	μmhos μmhos
g fs	Common Source Forward	$V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA},$ f = 100 MHz		12,500 45	
gfs Goss	Common Source Forward Transconductance	$V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA},$			μmho
gfs goss C _{iss}	Common Source Forward Transconductance Common Source Output Conductance	$V_{DS} = 15 \text{ V}, I_D = 2.0 \text{ mA},$ f = 100 MHz $V_{DS} = 15 \text{ V}, I_D = 2.0 \text{mA}, f = 1.0 \text{ kHz}$		45	μmhos
9fs 9oss Ciss Crss	Common Source Forward Transconductance Common Source Output Conductance Input Capacitance Reverse Transfer Capacitance Equivalent Short-Circuit Input	$\begin{split} &V_{DS} = 15 \text{ V, } I_D = 2.0 \text{ mA,} \\ &f = 100 \text{ MHz} \\ &V_{DS} = 15 \text{ V, } I_D = 2.0 \text{mA, } f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V, } I_D = 2.0 \text{mA, } f = 1.0 \text{MHz} \end{split}$		45 12	μmhos μmhos pF
Goss Ciss Crss en	Common Source Forward Transconductance Common Source Output Conductance Input Capacitance Reverse Transfer Capacitance	$\begin{split} &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \end{split}$		45 12 3.0	μmhos pF
9fs Goss Ciss Crss en	Common Source Forward Transconductance Common Source Output Conductance Input Capacitance Reverse Transfer Capacitance Equivalent Short-Circuit Input Noise Voltage	$\begin{split} &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \end{split}$		45 12 3.0 50	µmhos pF pF nV/√H
90ss Ciss Crss en	Common Source Forward Transconductance Common Source Output Conductance Input Capacitance Reverse Transfer Capacitance Equivalent Short-Circuit Input Noise Voltage Noise Figure	$\begin{split} &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &R_{G} = 1.0 \text{ m}\Omega \end{split}$		45 12 3.0 50	µmhos pF pF nV/√H dB
9fs Ooss Ciss Crss en NF IDSS1 - IDSS2 9fs1 - 9fs2	Common Source Forward Transconductance Common Source Output Conductance Input Capacitance Reverse Transfer Capacitance Equivalent Short-Circuit Input Noise Voltage Noise Figure I _{DSS} Match	$\begin{split} &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DS} = 15 \text{ V}, V_{GS} = 0 \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}$		45 12 3.0 50 1.0 5.0 10	µmho µmho pF pF nV/\H dB % mV
90ss Ciss Crss en NF	Common Source Forward Transconductance Common Source Output Conductance Input Capacitance Reverse Transfer Capacitance Equivalent Short-Circuit Input Noise Voltage Noise Figure I _{DSS} Match g _{fs} Match	$\begin{split} &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, \\ &f = 100 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ MHz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 10 \text{ Hz} \\ &V_{DS} = 15 \text{ V}, V_{GS} = 0 \\ &V_{DS} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ &V_{DG} = 15 \text{ V}, I_{D} = 2.0 \text{ mA}, f = 1.0 \text{ kHz} \\ \end{split}$		45 12 3.0 50 1.0 5.0	µmho µmho pF pF nV/√F dB %

General Purpose Dual Amplifier

(continued)

Typical Characteristics (continued)

General Purpose Dual Amplifier

(continued)

Typical Characteristics (continued)

General Purpose Dual Amplifier

(continued)

Typical Characteristics (continued)

