

Black Plastic Photodiode

LTR-516AB/LTR-526AB/LTR-536AB/LTR-546AB

Features

- · High photo sensitivity.
- · Suitable for infrared radiation.
- · Low junction capacitance.
- · High cut-off frequency.
- · Fast switching time.

Description

The LTR-516AB/LTR-526AB/LTR-536AB/LTR-546AB are special dark plastic package that cut the visible light and suitable for the detectors of infrared applications. This series is spectrally matched to the LTE-3677/LTE-3376 of infrared emitting diodes.

LTR-536AB

LTR-546AB

Package Dimensions

LTR-516AB

LTR-526AB

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.5mm (.059") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Absolute Maximum Ratings at Ta=25°C

Parameter	Maximum Rating	Unit		
Power Dissipation	150	mW		
Reverse Break Down Voltage	30	V		
Operating Temperature Range	-40°C to +85°C			
Storage Temperature Range	-55°C to +100°C			
Lead Soldering Temperature [1.6mm (.063 in.) from body]	260°C for 5 Seconds			

Electrical Optical Characteristics at Ta=25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Reverse Break Down Voltage	V(BR)R	30			V	IR=100 μ A Ee=0mW/cm ²
Reverse Dark Current	I _D (R)			30	nA	V _R =10V Ee=0mW/cm ²
Open Circuit Voltage	Voc		350		mV	λ =940nm Ee=0.5mW/cm ²
Rise Time	Tr		50		nsec	VR=10V
Fall Time	Tf		50		nsec	$\lambda = 940$ nm RL=1K Ω
Light Current	Is	1.7	2		μΑ	V _R =5V λ =940nm Ee=0.1mW/cm²
Total Capacitance	Ст		25		РF	R=3V V _F =1MHZ Ee=0mW/cm ²
Wavelength of the Max Sensitivity	λ SMAX		900		nm	

Typical Electrical/Optical Characteristic Curves (25°C Ambient Temperature Unless Otherwise Noted)

TA=25 XC, Ee=0 mW/cm²

Typical Electrical/Optical Characteristic Curves (25°C Ambient Temperature Unless Otherwise Noted)

Fig.3 PHOTOCURRENT VS.
AMBIENT TEMPERATURE

Fig.4 DARK CURRENT AMBIENT TEMPERATURE VR=10, Ee=0mW/cm²

Fig.5 RELATIVE SPECTRAL SENSITIVITY VS WAVELENGTH

Fig.6 PHOTOCURRENT VS IRRADIANCE λ = 940 nm

Typical Electrical/Optical Characteristic Curves (25°C Ambient Temperature Unless Otherwise Noted)

Fig.7 SENSITIVITY DIAGRAM

Fig.8 TOTAL POWER DISSIPATION VS AMBIENT TEMPERATURE