MILITARY DATA SHEET Original Creation Date: 12/02/96 Last Update Date: 12/20/96 Last Major Revision Date: 12/02/96 ## REFERENCE DIODE MNLM103-3.6-H REV 0A0 ### General Description The LM103 is a two-terminal monolithic reference diode electrically equivalent to a breakdown diode. The device makes use of the reverse punch-through of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction zener diodes at low voltages. Breakdown voltages from 3.0V to 3.9V are available; and, although the design is optimized for operation between 100uA and lmA, it is completely specified from 10uA to 10mA. Noteworthy features of the device are: - Exceptionally sharp breakdown - Low dynamic impedance from 10uA to 10mA - Planar, passivated junctions for stable operation - Low capacitance The LM103, is useful in a wide range of circuit applications from level shifting to simple voltage regulation. It can also be employed with operational amplifiers in producing breakpoints to generate nonlinear transfer functions. Finally, its unique characteristics recommend it as a reference element in low voltage power supplies with input voltages down to 4V. #### Industry Part Number NS Part Numbers LM103 LM103H-3.6-SMD* LM103H-3.6/883 #### Prime Die LM103 #### Controlling Document 7702808XA* # Processing MIL-STD-883, Method 5004 ## Quality Conformance Inspection MIL-STD-883, Method 5005 | Subgrp | Description | Temp (°C) | |--------|---------------------|-----------| | 1 | Static tests at | +25 | | 2 | Static tests at | +125 | | 3 | Static tests at | -55 | | 4 | Dynamic tests at | +25 | | 5 | Dynamic tests at | +125 | | 6 | Dynamic tests at | -55 | | 7 | Functional tests at | +25 | | 8A | Functional tests at | +125 | | 8B | Functional tests at | -55 | | 9 | Switching tests at | +25 | Switching tests at Switching tests at +125 10 11 ## (Absolute Maximum Ratings) (Note 1) Power Dissipation (Note 2) 250mW Reverse Current 20mA Forward Current 100mA Operating Temperature Range -55 C to 125 C Storage Temperature Range $$-65\ \mbox{C}$$ to 150 \mbox{C} Maximum Junction Temperature 150 C Lead Temperature (Soldering, 60 seconds) 300 C Thermal Resistance ThetaJA Metal Can Pkg (Still Air @ 0.5W) 292 C/W (500LF/Min Air flow @ 0.5W) 147 C/W ThetaJC Metal Can Pkg 58 C/W ESD Tolerance (Note 3) TBD - Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. - Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax (Tjmax TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower. - Note 3: Human body model, 1.5K Ohms in series with 100pF. ## Electrical Characteristics ## DC PARAMETERS: (The following conditions apply to all the following parameters, unless otherwise specified.) DC: Tolerance = $\pm 10\%$. | SYMBOL | PARAMETER | CONDITIONS | NOTES | PIN-
NAME | MIN | MAX | UNIT | SUB-
GROUPS | |-----------------------|--|--|-------|--------------|------|------|-------|----------------| | Vz | Zener Voltage | Ir = 400uA | 2, 3 | | 3.24 | 3.96 | V | 1 | | | | | 3 | | 0.8 | 7 | V | 2 | | | | | 3 | | 1 | 8 | V | 3 | | | | Ir = 1mA | 2, 3 | | 3.24 | 3.96 | V | 1 | | | | | 3 | | 0.8 | 7 | V | 2 | | | | | 3 | | 1 | 8 | V | 3 | | | | Ir = 2mA | 2, 3 | | 3.24 | 3.96 | V | 1 | | | | | 3 | | 0.8 | 7 | V | 2 | | | | | 3 | | 1 | 8 | V | 3 | | | | Ir = 3mA | 2, 3 | | 3.24 | 3.96 | V | 1 | | | | | 3 | | 0.8 | 7 | V | 2 | | | | | 3 | | 1 | 8 | V | 3 | | Delta Vz/
Delta Ir | Zener Voltage
Change | 10uA ≤ Ir ≤ 100uA | | | | 120 | mV | 1 | | Delta ir | | 10uA ≤ Ir ≤ 100uA | | | | 200 | mV | 2, 3 | | | | 100uA ≤ Ir ≤ 1mA | | | | 50 | mV | 1 | | | | 100uA ≤ Ir ≤ 1mA | | | | 70 | mV | 2 | | | | 100uA ≤ Ir ≤ 1mA | | | | 60 | mV | 3 | | | | lmA ≤ Ir ≤ 5mA | | | | 150 | mV | 1 | | | | 1mA ≤ Ir ≤ 5mA | | | | 200 | mV | 2, 3 | | Ir | Reverse Leakage
Current | Vr = Vz -200mV (test uses Vz reading from Ir = 400uA subgroup 1) | | | | 5 | uA | 1 | | | | from ir = 400uA subgroup i) | | | | 50 | uA | 2, 3 | | Vf | Forward Voltage
Drop | Toltage If = 5mA | | | -0.7 | -1 | V | 1 | | | | | | | -0.5 | -1.5 | V | 2, 3 | | Rr | Reverse Dynamic
Impedance | Ir = 3mA ±5% | | | | 25 | Ohms | 1 | | Delta Vz/
Delta t | Temperature
Coefficient of
Zener Voltage | 100uA ≤ Ir ≤ 1mA, -55 C ≤ TA ≤ 125 C | 1 | | | -8 | mV/ (| 1 | | Vn | Peak-to-Peak
Broadband Noise
Voltage | 1Hz ≤ f ≤ 100KHz, Ir = 1mA | 1 | | | 1000 | uV | 1 | | Rr | Rev. Dynamic
Impedance | Ir = 0.3mA | 1 | | | 60 | Ohms | 1 | ## Electrical Characteristics #### DC PARAMETERS: (Continued) (The following conditions apply to all the following parameters, unless otherwise specified.) DC: Tolerance = $\pm 10\%$. | SYMBOL | PARAMETER | CONDITIONS | NOTES | PIN-
NAME | MIN | MAX | UNIT | SUB-
GROUPS | |------------------------|-------------------------|-----------------|-------|--------------|-----|-----|------|----------------| | Delta Vz /
Delta Ir | Zener Voltage
Change | 10uA ≤ Ir ≤ 1mA | 1 | | | 260 | mV | 1, 2, | #### DC PARAMETERS: DRIFT VALUES (The following conditions apply to all the following parameters, unless otherwise specified.) DC: Tolerance = ± 10 %. "Deltas not required on B-Level product. Deltas required for S-Level product ONLY as specified on Internal Processing Instructions (IPI)." | Vz | Zener Voltage | Ir = 400uA | | -0.08 | 0.08 | V | 1 | |----|---------------|------------|--|-------|------|---|---| | | | Ir = 1mA | | -0.08 | 0.08 | V | 1 | | | | Ir = 2mA | | -0.08 | 0.08 | V | 1 | | | | Ir = 3mA | | -0.08 | 0.08 | V | 1 | Note 1: Guaranteed parameter not tested. Tests 1 to 4 are set on the Teradyne based on the nominal Zener Voltage of the Note 2: devices being tested. Limits are as shown. Acceptable Deltas would be as shown. Tolerance is 10%. Nominal Zener Voltage is last two digits of device name. Test 1 to 4 at extreme temperatures can be datalogged (for purposes of computing temp-coefficient) but have no set limits. The limits listed in the Min and Max columns are those tested in the programs (for all Zener Voltages). Note 3: