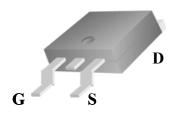
www.Lovoltech.com

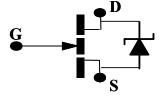
PWRLITE LD1101S

High Performance N-Ch Vertical Power JFET Transistor with Schottky

Features

- ❖ Trench Power JFET with low threshold voltage Vth.
- ❖ Device fully "ON" with Vgs = 0.7V
- Optimum for "Low Side" Buck Converters
- ❖ Optimized for Secondary Rectification in isolated DC-DC
- Low Rg and low Cds for high speed switching
- No "Body Diode"; extremely low Cds
- ❖ Added Fast Recovery Schottky Diode in same package


Applications


- ❖ VGA and Graphic Cards
- ❖ DDR, SDRAM for stand-by operation Power Supply
- ❖ DC-DC Converters
- Synchronous Rectifiers
- PC Motherboard Converters
- Step-down power supplies
- Brick Modules
- VRM Modules

Description

The Power JFET transistor from Lovoltech is a device that presents a Low Rdson allowing for improved efficiencies in DC-DC switching applications. The device is designed with a low threshold such that drivers can operate at 5V, which reduces the driver power dissipation and increases the overall efficiency. Lower threshold produces faster turn-on/turn-off, which minimizes the required dead time. The transistor "No Body Diode" provides a very low associated parasitic capacitance Cds. A Schottky Diode is added for applications where a freewheeling diode is required. Ringing is also reduced so that a lower voltage device may be a better solution.

DPAK Pin Assignments

N – Channel Power JFET with Schottky

Pin Definitions

Pin Number	Pin Name	Pin Function Description		Product Summary			
1	Gate	Gate. Transistor Gate		$V_{DS}(V)$	Rdson (Ω)	$I_{D}(A)$	
2	Drain	Drain. Transistor Drain		20V	0.011	15	
3	Source	Source. Transistor Source					

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Drain-Source Voltage	$V_{ m DS}$	20	V
Gate-Source Voltage	V_{GS}	-10	V
Gate-Drain Voltage	$V_{ m GD}$	-20	V
Continuous Drain Current	I_{D}	30	A
Pulsed Drain Current	I_{D}	50	A
Junction Temperature	T_{J}	-55 to 150°C	°C
Storage Temperature	T_{STG}	-65 to 150°C	°C
Lead Soldering Temperature, 10 seconds	T	260°C	°C
Power Dissipation (Derated at 25°C)	P_{D}	50	W

LD1101S Product Specification

Thermal Resistance

Symbol	Parameter	DPAK	Units
		Ratings	
$R\Theta_{JA}$	Thermal Resistance Junction-to-Ambient	60	°C/W
$R\Theta_{JC}$	Thermal Resistance Junction-to-Case	3.0	°C/W

Electrical Specifications

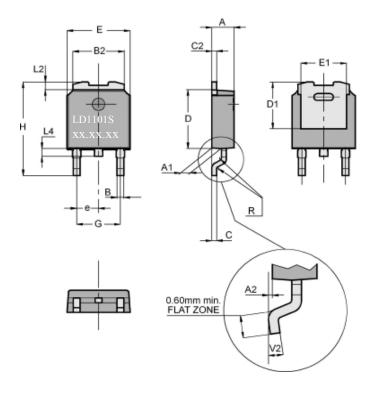
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

The ϕ denotes a specification which apply over the full operating temperature range.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
	Static					
BV_{DSX}	Breakdown Voltage	$I_D = 0.5 \text{ mA}$	15	20		V
	Drain to Source	$V_{GS} = -2 V$				
BV_{GDO}	Breakdown Voltage	$I_G = -50\mu A$		-22	-20	V
	Gate to Drain					
BV_{GSO}	Breakdown Voltage	$I_G = -1 \text{ mA}$		-11	-10	V
	Gate to Source					
$R_{DS(ON})$	Static Drain to Source ¹ On	$I_G = 100 \text{ mA}, I_D = 10 \text{A}$		10	12	m Ω
	Resistance (Current flows	$I_G = 40 \text{ mA}, I_D = 10 \text{A}$		11		$m\Omega$
	drain-to-source) See Fig. 1					
$V_{GS(TH)}$	Gate Threshold Voltage	V_{DS} =0.1 V, I_D =250 μ A	50	200		mV
	Dynamic					
Q_G	Total Gate Charge	ΔV_{Drive} =5V, I_D =15A, V_{DS} =16V		10		nC
Q_{GD}	Gate to Drain Charge			6		nC
Q _{GS}	Gate to Source Charge			0.7		nC
Q _{SW}	Switching Charge			6.7		nC
R_G	Gate Resistance			0.8		Ω
T _{D(ON})	Turn-on Delay Time			4		
T_R	Rise Time	$V_{DD}=16V, I_{D}=15A$		10		ns
T _{D(OFF)}	Turn-off Delay	$V_{\text{Drive}} = 5 \text{ V}$		2		
$T_{\rm F}$	Fall Time	Clamped Inductive Load		8		
C_{ISS}	Input Capacitance			1250		
Coss	Output Capacitance]		500		
C_{GS}	Gate-Source Capacitance	V_{DS} =10V, V_{GS} = -5 V, 1MHz.		900		pF
C_{GD}	Gate-Drain Capacitance			350		
C_{DS}	Drain-Source Capacitance			150		
	Schottky Diode					
B_{V}	Reverse Breakdown Voltage	$I_R = 0.1 \text{ mA}$	20	25		V
I_R	Reverse Leakage	$V_R=25V$		0.25	0.3	mA
V_F	Forward Voltage	$I_F = 1 A$			500	mV
$V_{\rm F}$	Forward Voltage	$I_F = 3 A$			550	mV
V_F	Forward Voltage	$I_F = 25 A$		800		mV
Qrr Reverse Recovery Charge		$I_s = 15 \text{ A di/dt} = 100 \text{A/us},$		15		nC

Notes:

^{1.} Pulse width \leq 500 μ s, duty cycle \leq 2%


LD1101S Product Specification

Ordering Information

Product Number	PN Marking	Package
LD1101S	LD1101S	TO252 (DPAK)

Package and Marking Information

6	ackage and Marking Information							
	DIMENSIONS							
	DIM	mm.			inch			
	DIM.	TYP.	MIN.	MAX.	TYP.	MIN.	MAX.	
	A		2.20	2.40		0.086	0.094	
	A1		0.90	1.10		0.035	0.043	
	A2		0.03	0.23		0.001	0.009	
	В		0.64	0.90		0.025	0.035	
	B2		5.20	5.40		0.204	0.212	
	C		0.45	0.60		0.017	0.023	
	C2		0.48	0.60		0.019	0.023	
	D		6.00	6.20		0.236	0.244	
	D1	5.10			0.201			
	E		6.40	6.60		0.252	0.260	
	E1	4.70			0.185			
	e	2.28			0.090			
	G		4.40	4.60		0.173	0.181	
	Н		9.35	10.10		0.368	0.397	
	L2	0.80			0.031			
	L4		0.60	1.00		0.023	0.039	
	R	0.20			0.008			
	V2		0°	8°		0°	8°	

Life Support Policy

LOVOLTECH'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF LOVOLTECH, Inc. As used herein:

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	In definition or in	This datasheet contains the design specifications for product development.
	Design	Specifications may change without notice.
Preliminary	Initial Production	This datasheet contains preliminary data; additional and application data will be
		published at a later date. Lovoltech, Inc. reserves the right to make changes at any
		time without notice in order to improve design.
No Identification Needed	In Production	This datasheet contains final specifications. Lovoltech reserves the right to make
		changes at any time without notice in order to improve the design.