

L7591 Subscriber Line Interface Circuit Protector

Features

- Shunts lightning pulses to ground
 - Positive or negative 30 A, 10 x 1000 μs
 - Positive or negative 40 A, 5 x 320 μs
 - Positive or negative 80 A, 2 x 10 μs
- Power-cross protection
 - 3.5 APEAK, 50 Hz to 60 Hz, 1 s
 - 5.0 APEAK, 50 Hz to 60 Hz, 10 ms
- Gate trigger current, 15 mA max
- Up to -80 V capability
- Holding current, 150 mA min

Pin Information

Table 1. Pin Description (Applies to DIP and SONB packages)

Pin	Symbol	Name/Function
1	TIP	Tip signal from customer.
2	Vs	Supply voltage to gate (–20 V to –80 V).
3	_	Test Point, do not use.
4	RING	Ring signal from customer.
5	PR	Protected ring signal to line-feed-circuitry.
6	GND	Device ground/fault current return.
7	GND	Device ground/fault current return.
8	PT	Protected tip signal to line-feed circuitry.

Note: Pins 1 and 4 must always be connected to the protection resistors shown in Figures 4 and 5 (Line Feed Circuitry). The SLIC can be connected either to the protected outputs (pins 5 and 8) or to the inputs (pins 1 and 4).

Description

The L7591 Subscriber Line Interface Circuit (SLIC) Protector is designed to protect line-feed circuitry from fault-induced lightning and power-cross surge pulses. If a fault current forces TIP and/or RING to a more negative voltage than Vs, current is conducted through the trip circuit. When the specified trip current level is reached, transistors PNPN1 and/or PNPN2 will turn on and "crowbar" the majority of the current to ground. If similar pulses force TIP and/or RING to a more positive state than ground, diodes D1 and/or D2 will conduct the pulse to ground. The L7591 SLIC Protector is available in an 8-pin, plastic DIP (L7591AB) and in an 8-pin, plastic SONB package (L7591AS).

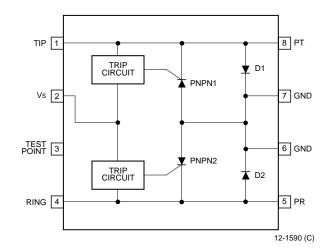


Figure 1. Functional and Pin Diagram

Absolute Maximum Ratings (At 25 °C)

Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to Absolute Maximum Ratings for extended periods can adversely affect the device reliability.

Parameter	Symbol	Value	Unit
Ambient Operating Temperature	TA	-40 to +85	°C
Storage Temperature Range	Tstg	-40 to +125	°C
Pin Soldering Temperature (t = 15 s max)	_	300	°C
Supply Voltage	Vs	-83	V
Peak Pulse Current: * (See Figure 2.)			
10 x 1000 μs	_	30	Α
5 x 320 μs	_	40	Α
2 x 10 μs	_	80	Α
Nonrepetitive Peak ON-state Current:			
t = 1 s, f = 50 Hz to 60 Hz	<u> </u>	3.5	Α
t = 10 ms, f = 50 Hz to 60 Hz	_	5	Α
Maximum Gate Current (Half Sine Wave 10 ms)		2	Α
Maximum Voltage:			
TIP or RING to Gnd	_	-100	V
Vs to Gnd	_	-80	V

*Pulse Waveform Data:

10 x 1000 μs	tr = 10 μs	tp = 1000 μs
5 x 320 μs	tr = 5 μs	tp = 320 μs
2 x 10 μs	$tr = 2 \mu s$	tp = 10 μs

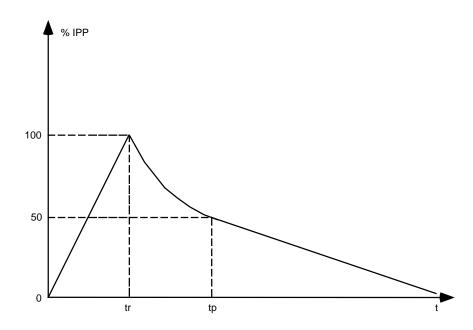


Figure 2. Pulse Waveform

Electrical Specifications (TA = 25 °C)

The minimum and/or maximum limits specified for the parameters are based on the absolute system. The algebraic sign only applies to the direction of the parameter. These requirements apply to either the TIP or RING terminal; however, the device is capable of simultaneous Tip and Ring surges and continuous current, as noted below in Tip and Ring leads. See Figure 3 and Table 5 for symbol and test condition definition.

Table 2. Electrical Characteristics D1 and D2

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Forward Voltage	VF	IP = 5 A, tP = 1 ms	_	1.6	3	V
Peak Forward Voltage	VFP	IPP = 30 A , $10 \times 1000 \mu \text{s}$	_	5.2	15	V

Table 3. Electrical Characteristics, PNPN Circuitry

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Gate Trigger Current	IGT	Vs = 48 V	0.2	_	15	mA
Holding Current	lн	tP = 10 ms, Vs = 48 V	-150	-250	_	mA
Trip Voltage	VT	dc	_	Vs -2.0	Vs -2.8	V
Dynamic Trip Voltage	VsgL	IPP = 30 A, Vs = -48 V, 10 x 1000 µs	_	- 51	-63	V
Reverse Leakage Current: Vs to Tip or Ring	IRG	Vs = -75 V				
TA = 25 °C	_	_	_	0.12	5	μΑ
TA = 70 °C	_	_	_	_	50	μΑ
dv/dt Sensitivity	_	Tip or Ring Lead	±1000	_	_	V/µs
On-state Voltage:	Von	tP = 1 ms				
IT = 0.5 A	_	_	_	-1.3	_	V
IT = 3.0 A		_	_	-2.3	_	V

Table 4. Electrical Characteristics, Diode and PNPN Circuitry

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Leakage Current: (Gate Open)	lR	VR = -85 V				
TA = 25 °C TA = 70 °C	_ _	_ _	_ _	0.14 —	5 50	μA μA
Off-state Capacitance:	Coff	f = 1 MHz				
VR = −3 V	_	_	_	50	_	pF
VR = -48 V		_	_	40	_	pF

Characteristic Curves

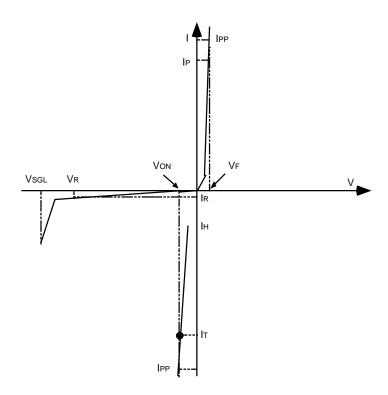
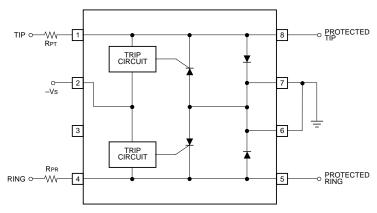



Figure 3. Typical Trip Characteristics of the SLIC Protector

Table 5. Symbols Definition

Symbol	Parameter
lΗ	PNPN holding current
IGT	Gate trigger current out of pin Vs
IР	Pulse current
IPP	Peak pulse current
IRG	Reverse leakage current Vs to Tip or Ring
ΙΤ	Tip or Ring current when PNPN is on
IR	Reverse leakage current, Tip or Ring to Ground
VF	Forward voltage, Tip or Ring to Ground
VFP	Peak forward voltage, Tip or Ring to Ground
VT	Trip voltage, Tip or Ring to Vs
VsgL	Dynamic trip voltage, Tip or Ring to Vs
Von	PNPN on voltage at IT
VR	Tip or Ring voltage when PNPN is off
Coff	Off-state capacitance, Tip or Ring to Ground

Applications

RPT and RPR must be properly selected for proper operation and/or response.

Figure 4. Standard Configuration

Figure 5. Test Circuit

CARBON BLOCK
PTC

CARBON BLOCK
PTC

RELAYS

6

7

CARBON BLOCK
PTC

4

CARBON SLIC
PROTECTOR

FEED'

6

7

CARBON SLIC
PROTECTOR

6

7

CARBON SUIC
PTC

4

CARBON SUIC
PTC

4

CARBON SUIC
PTC

4

CARBON SUIC
PTC

6

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

7

CARBON SUIC
PTC

6

CARBON SUIC
PTC

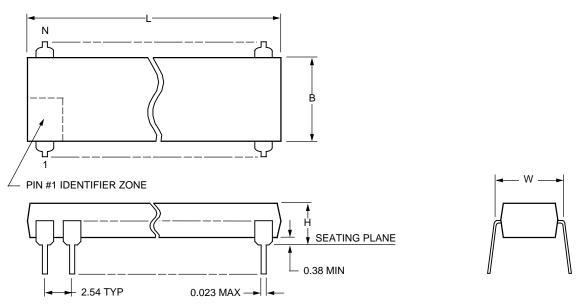
7

CARBON SUIC

*An example device is Lucent Technologies Microelectronics Group's LB1276 High Balance SLIC.

Figure 6. Fully Protected Electronic TIP-RING Interface (Not all devices needed in all applications)

12-1632 (C)

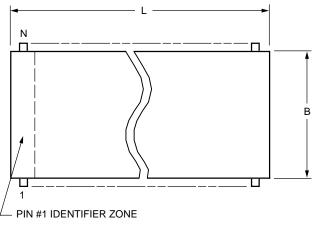

12-1598 (C)

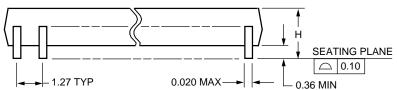
12-1596 (C)

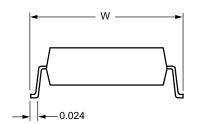
Outline Drawings

8-Pin DIP (L7591AB)

Dimensions are in millimeters.


5-4410r.1


	Number of Pins (N)	Package Dimensions				
Package Description		Maximum Length (L)	Maximum Width Without Leads (B)	Maximum Width Including Leads (W)	Maximum Height Above Board (H)	
PDIP3 (Plastic Dual-In-Line Package)	8	10.16	6.48	7.87	5.46	


Outline Drawings (continued)

8-Pin, SONB (L7591AS)

Dimensions are in millimeters.

5-4414r.2

	Number of	Package Dimensions				
Package Description	Pins (N)	Maximum Length (L)	Maximum Width Without Leads (B)	Maximum Width Including Leads (W)	Maximum Height Above Board (H)	
SONB (Small Outline, Narrow Body)	8	5.08	4.01	6.17	1.73	

Ordering Information

Device Part No.	Description	Package	Comcode
ATTL7591AB	SLIC Protector	8-Pin DIP	107056582
ATTL7591AS	SLIC Protector	8-Pin SONB	107056590
ATTL7591AS-TR	SLIC Protector	8-Pin SONB (Tape and Reel)	107232787

For additional information, contact your Microelectronics Group Account Manager or the following:

INTERNET: http://www.lucent.com/micro E-MAIL: docmaster@micro.lucent.com

U.S.A.: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103

1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)

ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256

Tel. (65) 778 8833, FAX (65) 777 7495

JAPAN: Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan

Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148 EUROPE:

Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Bracknell), FRANCE: (33) 1 41 45 77 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),

ITALY: (39) 2 6601 1800 (Milan), SPAIN: (34) 1 807 1441 (Madrid)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Lucent Technologies

microelectronics group

DS98-034ALC (Replaces DS97-158ALC)