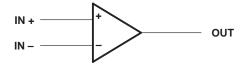
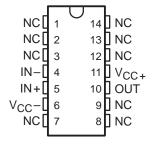
SLOS060 - D962, DECEMBER 1970 - REVISED SEPTEMBER 1990

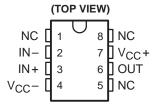
- Low Input Currents
- No Frequency Compensation Required
- Low Input Offset Parameters
- Short-Circuit Protection
- No Latch-Up
- Wide Common-Mode and Differential Voltage Ranges

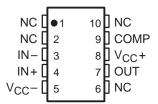

description

The LM107, LM207, and LM307 are high-performance operational amplifiers featuring very low input bias current and input offset voltage and current to improve the accuracy of high-impedance circuits using these devices.


The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The LM107 is characterized for operation over the full military temperature range of -55° C to 125° C, the LM207 is characterized for operation from -25° C to 85° C, and the LM307 is characterized for operation from 0° C to 70° C.


symbol


LM107...J OR W PACKAGE (TOP VIEW)

LM107...JG PACKAGE LM207, LM307...D OR P PACKAGE

LM107...U FLAT PACKAGE (TOP VIEW)

NC - No internal connection

AVAILABLE OPTIONS

	V _{IO} max AT 25°C	PACKAGE								
TA		SMALL-OUTLINE (D)	CERAMIC (J)	CERAMIC DIP (JG)	PLASTIC DIP (P)	FLAT PACK (U)	FLAT PACK (W)			
0°C to 70°C	7.5 mV	LM307D	ı	ı	LM307P	ı	_			
-25°C to 85°C	2 mV	LM207D	ı	ı	LM207P	ı	_			
-55°C to 125°C	2 mV	_	LM107J	LM107JG	_	LM107U	LM107W			

The D package is available taped and reeled. Add the suffix R to the device type, (e.g., LM307DR).

LM107, LM207, LM307 HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

SLOS060 - D962, DECEMBER 1970 - REVISED SEPTEMBER 1990

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	LM107	LM207	LM307	UNIT
Supply voltage, V _{CC +} (see Note 1)	22	22	18	V
Supply voltage, V _{CC} _ (see Note 1)	-22	-22	-18	V
Differential input voltage (see Note 2)	±30	±30	±30	V
Input voltage (either input, see Notes 1 and 3)	±15	±15	±15	V
Duration of output short circuit (see Note 4)	unlimited	unlimited	unlimited	
Continuous total dissipation	See Dissipation Rating Table			
Operating free-air temperature range	-55 to 125	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J, JG, U, or W package	300			°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package		260	260	°C

- NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC} + and V_{CC} -.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or either power supply. For the LM107 only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. For the LM207 only, the unlimited duration of the short circuit applies at (or below) 85°C case temperature or 75°C free air temperature.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	500 mW	5.8 mW/°C	64°C	464 mW	377 mW	_
J	500 mW	11.0 mW/°C	105°C	500 mW	500 mW	275 mW
JG	500 mW	8.4 mW/°C	90°C	500 mW	500 mW	210 mW
Р	500 mW	N/A	N/A	500 mW	500 mW	_
U	500 mW	5.4 mW/°C	57°C	432 mW	351 mW	135 mW
W	500 mW	8.0 mW/°C	87°C	500 mW	500 mW	200 mW

recommended operating conditions

	MIN	NOM MA	х	UNIT
Supply voltage, V _{CC +}	2		8	V
Supply voltage, V _{CC} _	-2	-	8	V

SLOS060 - D962, DECEMBER 1970 - REVISED SEPTEMBER 1990

electrical characteristics at specified free-air temperature (see Note 5)

PARAMETER		TEST CONDITIONST		LM107, LM207			LM307			UNIT	
	PARAMETER	TEST CONDITIONS!		MIN	TYP	MAX	MIN	TYP	MAX	UNII	
V	Input offset voltage	V _O = 0	25°C		0.6	2		2	7.5	mV	
VIO	input onset voltage	ΛΩ = 0	Full range			3			10	mv	
ανιο	Average temperature coefficient of input offset voltage	V _O = 0	Full range		3	15		6	30	μV/°C	
li o	Input offcot current	V _O = 0	25°C		1.5	10		3	50	nA	
lio	Input offset current	_	Full range			20			70	l na	
		$T_A = -55^{\circ}C \text{ to } 25^{\circ}$	С		0.02	0.2					
~a	Average temperature coefficient	$T_A = 25^{\circ}C$ to MAX			0.01	0.1				nA/°C	
αlIO	of input offset current	$T_A = 0$ °C to 25°C $T_A = 25$ °C to 70°C						0.002	0.6	na/°C	
								0.001	0.3		
1.5	Input bias current		25°C		30	75		70	250	nA	
IВ			Full range			100			300		
VICR	Common-mode input voltage range	See Note 6	Full range	±15			±12			V	
	Maximum peak-to-peak output	$V_{CC \pm = \pm 15 \text{ V}}$	25°C	24	28		24	28			
.,		$R_L = 10 \text{ k}\Omega$	Full range	24			24			V	
VO(PP)	voltage swing	$V_{CC \pm = \pm 15 \text{ V}}$	25°C	20	26		20	26		V	
		$R_L = 2 k\Omega$	Full range	20			20				
	Large-signal differential voltage amplification	$V_{CC \pm = \pm 15 \text{ V}}$	25°C	50	200		25	200			
AVD		$V_0 = \pm 10 \text{ V},$	Full range	25			15			V/mV	
		$R_L = 2 k\Omega$									
rį	Input resistance		25°C	1.5	4		0.5	2		ΜΩ	
CMDD	Common-mode rejection ratio	V _{IC} = V _{ICR} min	25°C	80	98		70	90		dB	
CMRR			Full range	80			70				
k	Supply voltage rejection ratio		25°C	80	98		70	96		dB	
^k SVR	$(\Delta V_{CC}/\Delta V_{IO})$		Full range	80			70			UD	
		No load,	25°C		1.8	3		1.8	3		
ICC	Supply current	V _O = 0, See Note 6	MAX		1.2	2.5				mA	

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for LM107 is -55° C to 125°C, for LM207 is -25° C to 85°C, and for LM307 is 0°C to 70°C.

NOTES: 5. Unless otherwise noted $V_{CC\pm}$ = ± 5 V to ± 20 V for LM107 and LM207, and $V_{CC\pm}$ = ± 5 V to ± 15 V for LM307. All typical values are at $V_{CC\pm}=\pm15$ V. 6. For the LM107 and LM207, $V_{CC\pm}=\pm20$ V. For the LM307, $V_{CC\pm}=\pm15$ V.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated