Low Capacitance Surface Mount TVS for High-Speed Telecommunication Systems

November 5, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

DESCRIPTION

The LC01-6 transient voltage suppressor is designed to protect components which are connected to high speed telecommunication lines from voltage surges caused by **lightning**, electrostatic discharge **(ESD)**, and electrical fast transients **(EFT)**.

TVS diodes are ideal for use as board level protection of sensitive semiconductor components. The LC01-6 combines TVS diodes with low capacitance compensation diodes to provide an integrated, low capacitance protection solution. The LC01-6 is suited for use on T1/E1 and xDSL interfaces in equipment such as base stations, routers, and channel service units. The LC01-6 meets the long-haul (outer-building) transient immunity requirements of Bellcore 1089 for telecommunications applications.

The SO-16 surface mount package allows flexibility in the design of crowded PC boards.

ORDERING INFORMATION

Part Number	Qty per Reel	Reel Size
LC01-6.TD	1000	13"

Note:

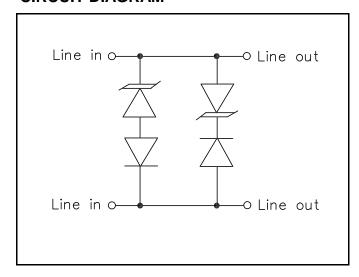
(1) No suffix indicates tube pack.

FEATURES

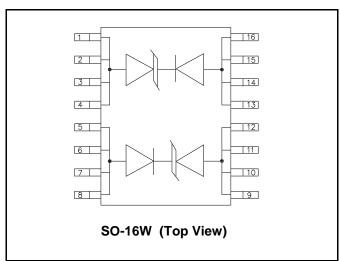
- 1500 watts peak pulse power (tp = 10/1000µs)
- Transient protection for high speed data lines to IEC 1000-4-2 (ESD) 15kV (air), 8kV (contact) IEC 1000-4-4 (EFT) 40A (tp = 5/50ns) IEC 1000-4-5 (Lightning) 95A (tp = 1.2/50μs) Bellcore 1089 (Outer-Building) 100A (tp = 10/1000μs)

FCC Part 68 200A (tp = $10/160\mu s$)

- Differential protection for one Tip & Ring line pair
- Low capacitance for high speed interfaces
- Low operating voltage
- Low clamping voltage
- Integrated structure saves board space and increases reliability
- Solid-state silicon avalanche technology


MECHANICAL CHARACTERISTICS

- JEDEC SO-16W package
- Molding compound flammability rating: UL 94V-0
- Marking: Part number, date code, logo
- Packaging: Tube or Tape and Reel per EIA 481


APPLICATIONS

- T1/E1 Line Cards
- Base Stations
- WAN Interfaces
- xDSL Interfaces
- CSU/DSU Equipment

CIRCUIT DIAGRAM

SCHEMATIC & PIN CONFIGURATION

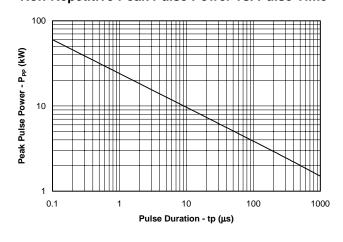
Low Capacitance Surface Mount TVS for High-Speed Telecommunication Systems

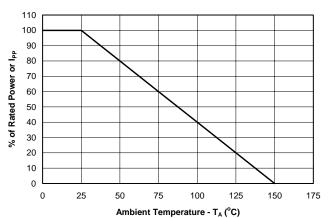
November 5, 1998

MAXIMUM RATINGS

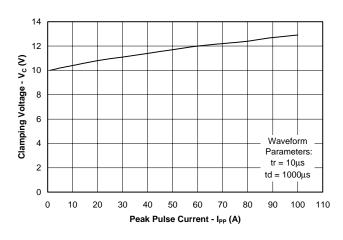
Rating	Symbol	Value	Unit	
Peak Pulse Power (tp = 10/1000μs)	P _{pk}	1500	Watts	
Peak Pulse Current (tp = 10/1000μs)	I _{PP}	100	А	
Peak Pulse Current (tp = 10/160μs)	I _{PP}	200	А	
Thermal Resistance Junction to Case	$\theta_{\sf JC}$	30	°C/W	
Thermal Resistance Junction to Ambient	θ_{JA}	95	°C/W	
Lead Soldering Temperature	T _L	260 (10 sec.)	°C	
Operating Temperature	T _J	-55 to +125	°C	
Storage Temperature	T _{STG}	-55 to +150	°C	

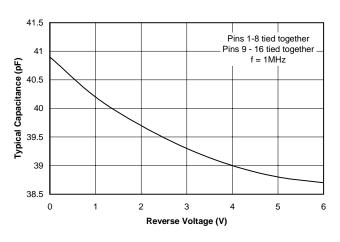
ELECTRICAL CHARACTERISTICS

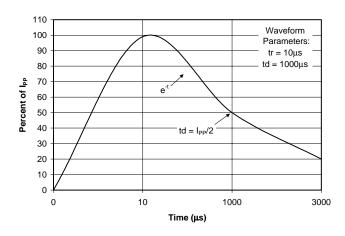

LC01-6									
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units			
Reverse Stand-Off Voltage	V_{RWM}				6	V			
Reverse Breakdown Voltage	V_{BR}	I _t = 1mA	8.0			V			
Reverse Leakage Current	I _R	V _{RWM} = 6V, T=25°C			25	μΑ			
Clamping Voltage	V _c	$I_{PP} = 100A,$ tp = 10/1000µs			15	V			
Clamping Voltage	V _c	$I_{PP} = 200A,$ tp = 10/160µs			16	V			
Temperature Coefficient of Breakdown Voltage	αT_{VBR}			3		mV/°C			
Junction Capacitance	C _j	Between I/O pins V _R = 0V, f = 1MHz			50	pF			

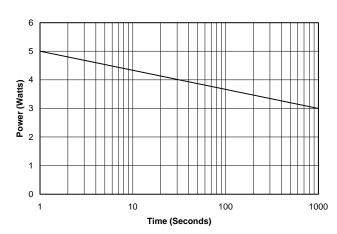

November 5, 1998

TYPICAL CHARACTERISTICS


Non-Repetitive Peak Pulse Power vs. Pulse Time


Pulse Derating Curve


Clamping Voltage vs. Peak Pulse Current


Capacitance vs. Reverse Voltage

Pulse Waveform

AC Power Dissipation

November 5, 1998

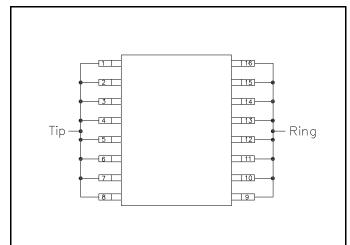
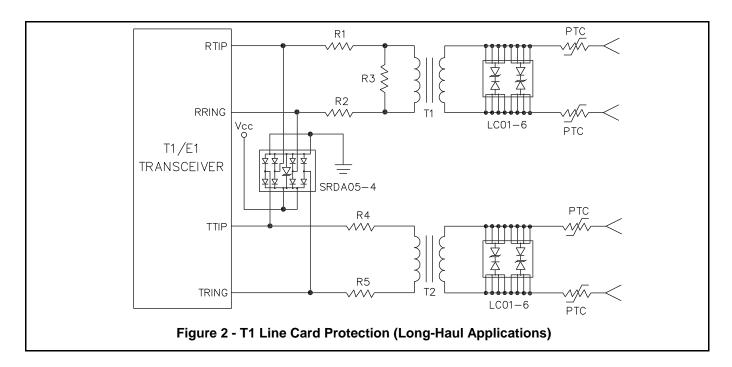
APPLICATIONS INFORMATION

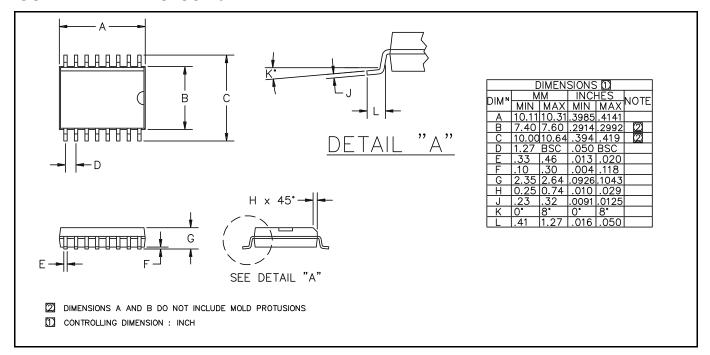
Device Connection Options for Protection of High- Speed Data Lines

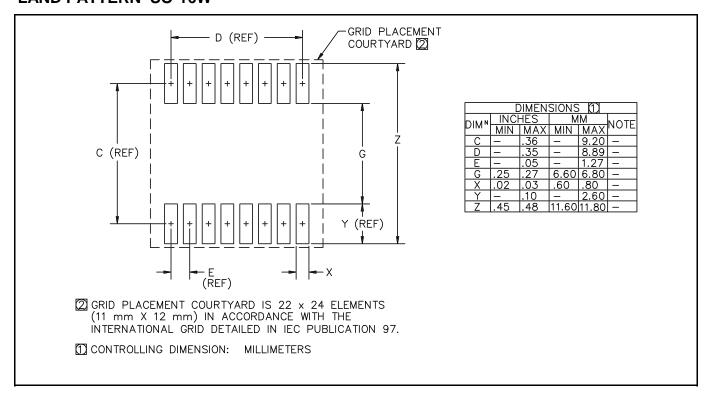
The LC01-6 is designed to protect high-speed data lines from transient over-voltages which result from lightning and ESD. The device is designed to protect one line pair in differential (Line-to-Line) mode. Pins 1-8 are connected to line 1 and pins 9-16 are connected to line 2 as shown. All pins should be connected for best results.

T1/E1 Linecard Protection

A typical long-haul T1/E1 linecard protection circuit is shown in Figure 2. The LC01-6 is connected between Tip & Ring on the transmit and receive line pairs. It provides protection to metallic (line-to-line) lightning surges per Bellcore 1089 and FCC Part 68. Depending on the application, a high voltage crowbar device (not shown) such as a gas discharge tube (GDT) or TVS Thyristor may be used to suppress common mode (line-to-ground) surges. To complete the protection circuit, the SRDA05-4 (or SRDA3.3-4 for 3.3V supplies) is employed as the secondary IC side protection element. This device helps prevent the transceiver from latching up by providing fine clamping of transients that are coupled through the transformer. Positive temperature coefficient (PTC) resistors or fuses are also required for AC power cross protection. For further information, reference Semtech application note AN97-10.


Figure 1 - Connection for Differential Protection (Line-to-Line)



November 5, 1998

OUTLINE DRAWING SO-16W

LAND PATTERN SO-16W

