Solid State

PACKAGED HIGH DYNAMIC RANGE PHEMT

FEATURES

- +20 dBm Typical Power at 18 GHz
- 9.5 dB Typical Power Gain at 18 GHz
- 16 dB Typical SSG at 2 GHz
- 0.8 dB Typical Noise Figure at 2 GHz
- Low Intermodulation Distortion
- Color-Coded by I_{DSS} range

DESCRIPTION AND APPLICATIONS

The LPD200-P70 is a packaged Aluminum Gallium Arsenide / Indium Gallium Arsenide (AlGaAs/InGaAs) Pseudomorphic High Electron Mobility Transistor (PHEMT), utilizing an Electron-Beam direct-write 0.25 μ m by 200 μ m Schottky barrier gate. The recessed "mushroom" Ti/Pt/Au gate structure minimizes parasitic gate-source and gate resistances. The epitaxial structure and processing have been optimized for high dynamic range. The LPD200's active areas are passivated with Si₃N₄, and the P70 ceramic package is ideal for low-cost, high-performance applications that require a surface-mount package. Packages are color-coded by I_{DSS} range.

Typical applications include high dynamic range receiver preamplifiers for commercial applications including Cellular/PCS systems, broad bandwidth commercial instrumentation and military EW amplifiers, and commercial Space applications.

The LPD200 die-level. screening is patterned after MIL-STD-19500, JANC grade.

PERFORMANCE SPECIFICATIONS ($T_A = 25^{\circ}C$)

SYMBOLS	PARAMETERS		MIN	TYP	MAX	UNITS
I _{DSS}	Saturated Drain-Source Current	LPD200-P70-1 GREEN	40		65	mA
	$V_{DS} = 2V V_{GS} = 0V$	LPD200-P70-2 RED	66		85	mA
P_{1dB}	Output Power at 1dB Gain Compression at $f = 18$ GHz					
	$V_{DS} = 5.0V, I_{DS} = 50\% I_{DSS}$		19.0	20.0		dBm
G_{1dB}	Power Gain at 1dB Gain Compression at $f = 18$ GHz					
	$V_{DS} = 5.0V, I_{DS} = 50\% I_{DSS}$		8.0	9.5		dB
NF_{MIN}	Minimum Noise Figure at $f = 2$ GHz $V_{DS} = 3.3V$, $I_{DS} = 25\%$ I_{DSS}					
				0.8		dB
η_{ADD}	Power-Added Efficiency			50		%
I _{MAX}	Maximum Drain-Source Current	$V_{DS} = 2V V_{GS} = +1V$		125		mA
G_M	Transconductance	$V_{DS} = 2V V_{GS} = 0V$	60	80		mS
V _P	Pinch-Off Voltage	$V_{DS} = 2V I_{DS} = 1mA$	-0.25	-0.8	-1.5	V
I _{GSO}	Gate-Source Leakage Current	$V_{GS} = -5V$		1	15	μΑ
BV _{GS}	Gate-Source Breakdown Voltage	I _{GS} = 1mA	-6	-7		V
BV_GD	Gate-Drain Breakdown Voltage	$I_{GD} = 1mA$	-8	-9		V

DSS-022 WE

Solid State

PACKAGED HIGH DYNAMIC RANGE PHEMT

ABSOLUTE MAXIMUM RATINGS							
(25°C)							
SYMBOL	PARAMETER	RATING ¹					
V_{DS}	Drain-Source Voltage	8V					
V_{GS}	Gate-Source Voltage	-3V					
I_{DS}	Drain-Source Current	I _{DSS}					
I_{G}	Gate Current	5 mA					
P_{IN}	RF Input Power	60 mW					
Тсн	Channel Temperature	175°C					
T _{STG}	Storage Temperature	-65/175°C					
P _T	Power Dissipation	400mW ^{3,4}					

RECOMMENDED CONTINUOUS OPERATING LIMITS						
SYMBOL	PARAMETER	RATING ²				
V _{DS}	Drain-Source Voltage	5V				
V_{GS}	Gate-Source Voltage	-0.8V				
I_{DS}	Drain-Source Current	0.50 x I _{DSS}				
I_{G}	Gate Current	2 mA				
P _{IN}	RF Input Power	30 mW				
Тсн	Channel Temperature	150°C				
T _{STG}	Storage Temperature	-20/50°C				
P _T	Power Dissipation	350 mW ^{3,4}				
G_{XdB}	Gain Compression	6 dB				

NOTES:

- 1. Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.
- 2. Recommended Continuous Operating Limits should be observed for reliable device operation.
- 3. Power Dissipation defined as: $P_T \equiv (P_{DC} + P_{IN}) P_{OUT}$, where: $P_{DC} = DC$ bias power, $P_{OUT} = RF$ output power, and

 $P_{IN} = RF$ input power.

4. Power Dissipation to be de-rated as follows above 25°C:

Absolute Maximum: $P_T = 400 \text{mW} - (3.1 \text{mW/}^{\circ}\text{C}) \times T_{HS}$

Recommended Continuous Operating: P_T = 350mW - (3.1mW/°C) x T_{HS}

where T_{HS} = heatsink or ambient temperature.

HANDLING PRECAUTIONS:

Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500V), and further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

PACKAGE CHARACTERISTICS:

The P70 package is available with a standard gold over nickel finish. The package lids are epoxy sealed and are capable of passing MIL-STD hermeticity (Gross Leak).

PACKAGE OUTLINE:

(DIMENSIONS IN INCHES)

REVISION C 9/97 DSS-022 WE

Phone: (408) 988-1845 Internet: http://www.Filtronicsolid state.com

FAX: (408) 970-9950