128K x 8 Bit Very-Low Voltage Operating Static Ram

FEATURES

• Extended Operating Voltage:

1.8 V to 3.6 V

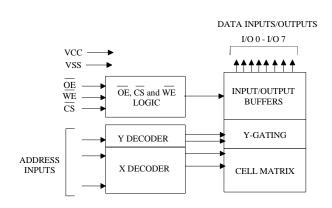
• Fast Access Time

LX62VL1001-15LX62VL1001-70 $1.8V : \le 80 \text{ns}$ $1.8V : \le 200 \text{ns}$ $3.0V : \le 15 \text{ns}$ $3.0V : \le 70 \text{ns}$

• Low Power Dissipation Standby / Operating

1.8V: .15mW / 10 mW (Typ.) 2.5V: .20mW / 15 mW (Typ.) 3.3V: .33mW / 20 mW (Typ.)

• Fully Static Operation


No clock or refresh required

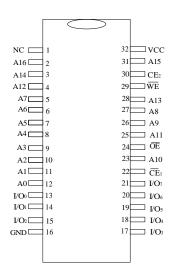
• Three state Outputs

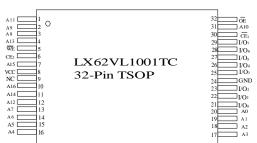
• Standard Pin configuration

LX62VL1001SC: 32-PIN SOP (525 mil) LX62VL1001PC: 32-PIN PDIP (600 mil) LX62VL1001TC: 32-PIN TSOP (Type I)

FUNCTIONAL BLOCK DIAGRAM

Pin Name	Pin Function
$A_0 - A_{16}$	Address Inputs
$\overline{ ext{WE}}$	Write Enable Input
$\overline{\text{CE}_1}$, CE_2	Chip Select Input
ŌE	Output Enable Input
I/O ₀ - I/O ₇	Data Inputs / Outputs
V_{CC}	Power (1.8 v - 3.6 v)
V_{SS}	Ground
NC	No Connection


GENERAL DESCRIPTION


The LX62VL1001 is a 1,048,576 bit Static Random Access Memory organized as 131,072 words by 8 bits

The device is fabricated using Linvix's low power, advanced CMOS process and high-speed but low power circuit technology.

The LX62VL1001 has an output enable input for precise control of the data outputs. It also has \underline{two} (2) chip enable inputs for memory expansion(CE₁) and minimum current power-down mode (CE₂). The LX62VL1001 is particularly well suited for use in low voltage (1.8 - 3.0 V) operation and battery back-up applications or in standard 3.3 V systems.

PIN CONFIGURATION (TOP VIEW)

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on any pin relative to V _{SS}	$V_{\rm IN,OUT}$	-0.5 to $V_{CC} + 0.5$	V
Voltage on Vcc Supply Relative to V _{SS}	V _{CC}	-0.5 to 4.0	V
Power Dissipation	P_{D}	1.0	W
Storage Temperature	$T_{\rm stg}$	-65 to 150	°C
Operating Temperature	T_{A}	-20 to 70	°C
Soldering Temperature and Time	T_{solder}	260 °C, 10 sec (Lead Only)	-

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS $(T_A = -20 \text{ TO } 70 ^{\circ}\text{C})$

Item	Symbol	Min.	Max.	Unit
Supply Voltage	V_{CC}	1.8	3.6	V
Ground	V_{SS}	0	0	V
Input High Voltage	V_{IH}	.7 Vcc	$V_{CC} + 0.5$	V
Input Low Voltage	$V_{ m IL}$	-0.3	.3 Vcc	V

DC AND OPERATING CHARACTERISTICS ($T_A = -20 \text{ TO } 70 \text{ }^{\circ}\text{C}$)

Item	Symbol Test Conditions VCC=1.8		=1.8V	VCC:	=2.5V	VCC=3.3V		Units	
			Min	Max	Min	Max	Min	Max	
Input Leakage	I_{LI}	$V_{IN}=V_{SS}$ to V_{CC}	-1	1	-1	1	-1	1	μΑ
Current									
Output Leakage	I_{LO}	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH}$	-1	1	-1	1	-1	1	μΑ
Current		or $\overline{WE} = V_{IL}, V_{I/O} = V_{SS}$							
		to V _{CC}							
DC Operating	I_{CC}	$\overline{\text{CS}} = V_{\text{IL}}, V_{\text{IN}} = V_{\text{IH}} \text{ or }$	-	1.0	=	1.5	-	2.0	mA
Supply Current		V_{IL} , $I_{I/O}=0$ mA							
Average Operating	I_{CC}	200/70/15 ns Cycle	-	50	-	80	-	100	mA
Current		$\overline{\text{CS}} = V_{\text{IL}}, I_{\text{I/O}} = 0 \text{ mA}$							
Standby Power	I_{SB}	$\overline{\text{CS}} = V_{\text{IH}}$	-	300	-	300	-	300	μΑ
Supply Current									
	I_{SB1}	$\overline{\text{CS}} \ge \text{V}_{\text{CC}}$ -0.2V	-	25	-	30	-	40	μΑ
		$V_{IN} \le 0.2V, V_{IN} \ge V_{CC} - 0.2V$							
Output Low	V_{OL}	I_{OL} = 2.1 mA at 3.3 V		.2		.2		0.4	V
Voltage		only		Vcc		Vcc			
Output High	V_{OH}	I_{OH} = -0.5 mA at 3.3 V	.8	-	.8		2.2	1	V
Voltage		only	Vcc		Vcc				

Note: \overline{CS} is defined as CE_1 and CE_2 in one chip select condition

LX62VL1001 CMOS SRAM

CAPACITANCE *(f =1MHz, Ta = 25 °C)

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C_{IN}	$V_{IN}=0V$	-	10	pF
Input / Output Capacitance	$C_{I/O}$	$V_{I/O}=0V$	-	10	pF

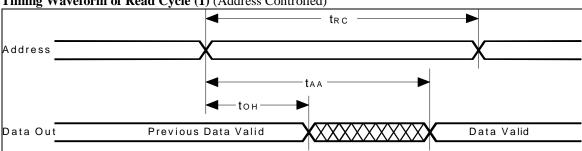
TEST CONDITIONS (Ta=-20 TO 70 °C)

Parameter	Value					
	$V_{\rm CC}$ = 1.8 V	Vcc = 2.5 V	$V_{\rm CC} = 3.3 V$			
Input Pulse Level	.8 Vcc to 0	.8 Vcc to 0	3.0 to 0			
Input Rise and Fall Time	5 ns	3 ns	3 ns			
Input and Output Timing Reference Levels	Vcc / 2	Vcc / 2	1.5 V			
Output Load	CL=30pF	CL = 30pF	CL=30pF			

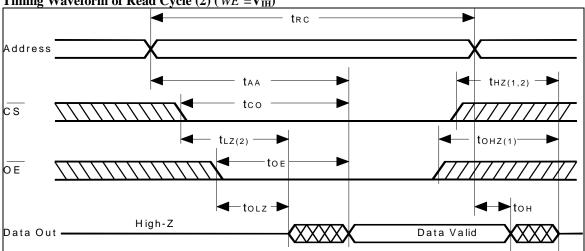
READ CYCLE

Parameter	Symbol	Vcc=	1.8 V	LX62VL1001-70 Vcc=3.0V± .3V		LX62VL1001-15 Vcc=3.0V± .3V		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t RC	200		70		15		ns
Address Access Time	t AA		200		70		15	ns
Chip Select to Output	t co		200		70		15	ns
Output Enable to Valid Output	t oe		120		45		7	ns
Chip Select to Low-Z Output	t_{LZ}	50		10		3		ns
Output Enable to Low-Z Output	t _{OLZ}	50		10		3		ns
Chip Disable to High-Z Output	t _{HZ}	0	80	0	15		7	ns
Output Disable to High-Z Output	t _{OHZ}	0	80	0	15		7	ns
Output Hold from Address Change	t _{OH}	30		10		3		ns

^{*} Including scope and jig capacitance



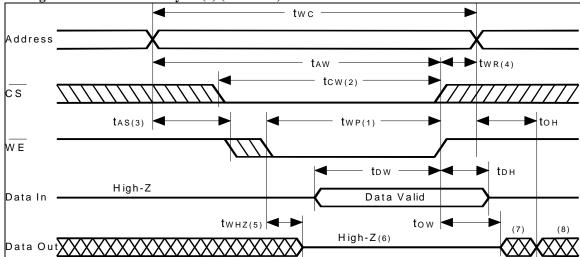
WRITE CYCLE


Parameter	Symbol	Vcc=	1.8 V	LX62VL1001-70 Vcc=3.0V± 0.3V		LX62VL1001-15 Vcc=3.0V±0.3V		Units
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	t_{WC}	200		70		15		ns
Chip Select to End of Write	t_{CW}	120		60		12		ns
Address Valid to End of Write	t_{AW}	120		60		12		ns
Address Set-up Time	t_{AS}	0		0		0		ns
Write Pulse Width	t_{WP}	120		50		12		ns
Write Recovery Time	t_{WR}	0		0		0		ns
Write to Output High-Z	$t_{ m WHZ}$	0	60	0	30		7	ns
Data to Write Time Overlap	$t_{\rm DW}$	100		30		8		ns
Data Hold from Write Time	t_{DH}	0		0		0		ns
End Write to Output Low-Z	t_{OW}	25		10		3		ns

TIMING DIAGRAMS

Timing Waveform of Read Cycle (1) (Address Controlled)

Timing Waveform of Read Cycle (2) ($\overline{WE} = V_{IH}$)


NOTES (READ CYCLE)

- 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are referenced to the V_{OH} or V_{OL} .
- 2. At any given temperature and voltage condition t_{HZ}(max) is less than t_{LZ}(min) both for a given device and from device to device.
- 3. WE is high for read cycle.
- 4 CS is defined as $\overline{CE_1}$ and CE_2 function. Function description is given in Page 6.
- 5. Address valid prior to or coincident with $\overline{\text{CS}}$ transition Low.

Timing Waveform of Write Cycle (2) (OE fixed)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and low \overline{WE} . A write begins at the latest transition among \overline{CS} going low and \overline{WE} going low: A write end at the earliest transition among \overline{CS} going high and \overline{WE} going high, t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the later of \overline{CS} going low to end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change.
- 5. if \overrightarrow{OE} , \overrightarrow{WE} are in the read mode during this period, the I/O pins are in the outputs Low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 6. If $\overline{\text{CS}}$ goes low simultaneously with $\overline{\text{WE}}$ going low or after $\overline{\text{WE}}$ going low, the outputs remain high impedance state.
- 7. D_{OUT} is the same phase of the latest written data in this write cycle.
- D_{OUT} is the read data of new address

LX62VL1001 CMOS SRAM

Functional Description

	$\overline{\text{CE}}_1$	CE ₂	WE	ŌE	Mode	I/O Pin	V _{CC} Current
	Н	X	X	X	Power Down	High-Z	I_{SB} , I_{SB1}
	X	L	X	X	Power Down	High-Z	I_{SB} , I_{SB1}
	L	Н	Н	Н	Output Disable	High-Z	I_{CC}
CS	L	Н	Н	L	Read	D_{OUT}	I_{CC}
	L	Н	L	X	Write	D_{IN}	I_{CC}

Note: 1. X means Don't Care

2. \overline{CS} is defined as CE_1 and CE_2 in one chip select condition

PACKAGE OUTLINES AND DIMENSIONS