Red LED/Photo IC for optical link L7726/S7727

Emitter/receiver for 156 Mbps POF communications

L7726 and S7726 are designed for high-speed POF (Plastic Optical Fiber) communications. Both devices are molded into miniature plastic packages with lenses, allowing easy and efficient coupling to a POF. S7727 uses a monolithic photo IC that ensures high resistance to external noise and high reliability, and provides P-ECL voltage conversion output.

Features

L7726

- Red LED for POF data link
- 650 nm emission suitable for POF communications
- ◆ High-speed response: fc=100 MHz Typ.
- ◆ High output power: Po= -1.5 dBm (IF=30 mA, \$\phi1 mm, POF)

S7727

- Photo IC receiver for POF data link
- Monolithic structure immune from external noise
- Data rates from 4 Mbps to 156 Mbps
- P-ECL voltage conversion output (Note: Unlike normal P-ECL output, S7727 output cannot be terminated with 50 Ω.)

Applications

- Plastic optical fiber communications (FA, office machine, home automation, LAN)
- Data transmission in locations subject to high electromagnetic noise

L7726

■ Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Value	Unit
Forward current	lF	50	mA
Power dissipation	Pmax	250 ^{*1}	mW
Operating temperature	Topr	0 to 60	°C
Storage temperature	Tstg	-40 to +85	°C
Soldering	-	230 °C, 5 s, at least 1.5 mm away from package surface	-

^{*1:} Derate power dissipation at a rate of 1.7 mW/°C above Ta=25 °C

■ Electrical and optical characteristics (Ta=25 °C)

<u> </u>		(: 0: =0 0)				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	VF	IF=30 mA	-	2.3	-	V
Peak emission wavelength	λр	IF=30 mA	640	650	660	nm
Spectral half width (FWHM)	Δλ	IF=30 mA	-	10	-	nm
Fiber coupled optical power	Po	IF=30 mA *2	-	-1.5	-	dBm
Cut-off frequency	fc	IF=30 mA	-	100	-	MHz

^{*2:} Measured using a 1-meter long optical fiber (MH4001 made by Mitsubishi Rayon).

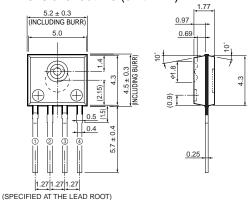
S7727

■ Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Value	Unit
Supply voltage	Vcc	-0.5 to +7.0	V
Output voltage	Vo	-0.5 to Vcc + 0.5	V
Output current	lo	8	mA
Power dissipation	Pmax	250 ^{*3}	mW
Operating temperature	Topr	-20 to +70	°C
Storage temperature	Tstg	-40 to +85	°C
Soldering	-	230 °C, 5 s, at least 1.5 mm away from package surface	-

^{*3:} Derate power dissipation at a rate of 1.7 mW/°C above Ta=25 °C

■ Electrical and optical characteristics (Ta=25 °C, Vcc=5.0 V)


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Data rate	fD	Bi-phase signal NRZ conversion	4	-	156	Mbps
Current consumption	Icc	*4, *5, *8	-	-	40	mA
High level output voltage		loh= -1 mA *4, *5, *8	3.9	-	4.3	V
Low level output voltage	Vol	Iol= -0.5 μA *4, *5, *8	2.9	-	3.4	V
Maximum detectable signal level	Pimax	*4, *5, *6, *7, *8	-2	-	-	dBm
Minimum detectable signal level	Pimin	*4, *5, *6, *7, *8	-	-	-22	dBm
Rise time	tr	10 to 90 % *4, *5, *8	-	-	3	ns
Fall time	tf	10 10 90 %	-	-	3	ns
Pulse width distortion	ΔΤ	*4, *5, *6, *8	-3	-	3	ns
Jitter	∆tj	*4, *5, *6, *8	-	-	3	ns

^{*4:} Measured with 156 Mbps input signal (Bi-phase signal)

Note)

- A bypass capacitor (0.1 μF) connected at a position within 2 mm from the lead, and a 4.7 μF capacitor is also connected to the power supply line nearby.
- The optical axis of the package lens is exactly aligned with the center axis of the optical plug, and the gap between the lens surface and the optical reference plane of the plug is 0.1 mm.
- If modulated light at 4 Mbps or less (including DC light and no light input) is input to S7727, the high and low levels cannot be discerned.

■ Dimensional outline (unit: mm)

	(0.9)
10°	

PIN No.	L7726	S7727
1	CATHODE	QB
2	CATHODE	GND
3	ANODE	Q
4	CATHODE	Vcc

Tolerance unless otherwise noted: ± 0.1 , $\pm 2^{\circ}$ Shaded area indicates burr. Values in parentheses indicate reference value.

KPICA0029EA

HAMAMATSU

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions.

Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2001 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Hamamatsu City, 435-8558 Japan, Telephone: (81) 053-434-3311, Fax: (81) 053-434-5184, http://www.hamamatsu.com
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O. Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658
France: Hamamatsu Photonics France S.A.R.L.: 8, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire ALZ 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777
North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171 41 Solan, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01
Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741

^{*5:} A 3 pF capacitor is connected to GND as a capacitive load (including parasitic capacitance such as probes, connectors and evaluation PCB patterns)

^{*6:} An optical input waveform is generated with a Hamamatsu standard transmitter.

^{*7:} A detectable signal level is an average value, measured using a plastic fiber (MH4001 made by Mitsubishi Rayon).

^{*8:} A 3 k Ω resistor is externally connected between Q and GND and also between QB and GND.